Skip to main content

Innovative Devices for Bedridden Older Adults Upper and Lower Limb Rehabilitation: Key Characteristics and Features

  • Conference paper
  • First Online:
Gerontechnology (IWoG 2019)

Abstract

Older adults are often bedridden as a consequence of acute disease that leads to hospitalization. Immobilization in a bed for a long period can affect negatively the function of many body systems, especially when talking about skeletal muscle. Lower limbs are strongly affected which will difficult the achievement of independence and will slow down the discharge moment. This study aims to identify the current patents of medical devices that allow for physical rehabilitation of bedridden patients, particularly of upper and lower limbs. Also, the scope of this patent review is to describe the key characteristics and features of the identified devices. A patent review was conducted between May 2019 and July 2019, identifying 39 devices for physical rehabilitation of bedridden patients. The majority of the devices are designed for lower or lower/upper limbs rehabilitation, which allows for early prevention or even reversion of main immobilization complications like physical disability. Modularity, flexibility, and automation are important features of the developed mechatronic solutions and seem to be able to enrich and promote a more efficient rehabilitation program in hospitals and nursing homes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guedes, L.P.C.M., Oliveira, M.L.C., Carvalho, G.A.: Deleterious effects of prolonged bed rest on the body systems of the elderly – a review. Rev. Bras. Geriatr. Gerontol. 21(4), 499–506 (2018). https://doi.org/10.1590/1981-22562018021.170167

    Article  Google Scholar 

  2. Wu, X., et al.: The association between major complications of immobility during hospitalization and quality of life among bedridden patients: a 3 month prospective multi-center study. PLoS ONE 13(10), e0205729 (2018)

    Article  Google Scholar 

  3. Fimognari, F.L., et al.: The severity of acute illness and functional trajectories in hospitalized older medical patients. J. Gerontol. Med. Sci. (2016). https://doi.org/10.1093/Gerona/glw096

  4. Jerez-Roig, J., Ferreira, L.M.B.M., Torres de Araújo, J.R., Lima, K.C.: Functional decline in nursing home residentes: a prognostic study. PLoS ONE 12(5), e0177353 (2017). https://doi.org/10.1371/journal.pone.0177353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bodilsen, A.C., et al.: Prediction of mobility limitations after hospitalization in older medical patients by simple measures of physical performance obtained at admission to the emergency department. PLOS ONE, 11(5) (2015). https://doi.org/10.1371/journal.pone.0154350

  6. Kramer, A., et al.: Plyometrics can preserve peak power during 2 months of physical inactivity: an RCT including a one-year follow-up. Front. Physiol. 9 (2018). https://doi.org/10.3389/fphys.2018.00633

  7. Adler, J., Malone, D.: Early mobilization in the intensive care unit: a systematic review. Cardiopulm. Phys. Ther. J. 23(1), 5–13 (2012). https://doi.org/10.1097/01823246-201223010-00002

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rocha, A.R.M., Martinez, B.P., Maldaner da Silva, V.Z., Junior, L.A.F.: Early mobilization: why, what for and how? Med. Intensiva 41(7), 429–436 (2017). https://doi.org/10.1016/j.medin.2016.10.003

    Article  Google Scholar 

  9. Caro, C.C., Costa, J.D., Cruz, D.M.C.: The use of mobility assistive devices and the functional Independence in stroke patients. Cad. Bras. Ter. Ocup. 26(3), 558–568 (2018). https://doi.org/10.4322/2526-8910.ctoAO1117

    Article  Google Scholar 

  10. Deluzio, S., Vora, I., Kumble, S., Zink, E.K., Stevens, R.D., Bahouth, M.N.: Feasibility of early, motor assisted upper extremity cycle ergometry in critically ill neurological patients with upper extremity weakness and variable cognitive status: a case series. Am. J. Phys. Med. Rehabil. 97(5), e37–e41 (2017). https://doi.org/10.1097/PHM.0000000000000857

    Article  Google Scholar 

  11. Bray, N.W., Smart, R.R., Jakobi, J.M., Jones, G.R.: Exercise prescription to reverse frailty. Appl. Physiol. Nutr. Metab. 41, 1112–1116 (2016). https://doi.org/10.1139/apnm-2016-0226

    Article  PubMed  Google Scholar 

  12. Martínez-Velilla, N., et al.: Effect of exercise intervention on functional decline in very elderly patients during acute hospitalization: a randomized clinical trial. JAMA Internal Med. 179(1), 28–36 (2019). https://doi.org/10.1001/jamainternmed.2018.4869

    Article  Google Scholar 

  13. Pohlman, M.C., Schweickert, W.D., Pohlman, A.S., et al.: Feasibility of physical and occupational therapy beginning from initiation of mechanical ventilation. Crit. Care Med. 38, 2089–2094 (2010)

    Article  Google Scholar 

  14. Schweickert, W.D., Pohlman, M.C., Pohlman, A.S., et al.: Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomized controlled trial. Lancet 379, 1874–1882 (2009)

    Article  Google Scholar 

  15. Hickman, C.E., et al.: Impact of very early physical therapy during septic shock on skeletal muscle: a randomized controlled trial. Clin. Invest. 46(9), 1436–1443 (2018). https://doi.org/10.1097/CCM.0000000000003263

    Article  CAS  Google Scholar 

  16. Roma, M.F.B., et al.: Effects of resistance training and aerobic exercise in elderly people concerning physical fitness and ability: a prospective clinical trial. Einestein 11(2), 153–157 (2013). http://www.scielo.br/pdf/eins/v11n2/03.pdf

    Article  Google Scholar 

  17. Hart, P.D., Buck, D.J.: The effect of resistance training on health-related quality of life in older adults: systematic review and meta-analysis. Health Promot. Perspect. 9(1), 1–12 (2019). https://doi.org/10.15171/hpp.2019.01. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377696

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mattox, E.: Medical devices and patient safety. Crit. Care Nurse 32(4), 60–68 (2012). https://doi.org/10.4037/ccn2012925

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support provided by the Health Sciences Research Unit: Nursing (UICISA: E), hosted by the Nursing School of Coimbra (ESEnfC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael A. Bernardes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bernardes, R.A. et al. (2020). Innovative Devices for Bedridden Older Adults Upper and Lower Limb Rehabilitation: Key Characteristics and Features. In: García-Alonso, J., Fonseca, C. (eds) Gerontechnology. IWoG 2019. Communications in Computer and Information Science, vol 1185. Springer, Cham. https://doi.org/10.1007/978-3-030-41494-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41494-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41493-1

  • Online ISBN: 978-3-030-41494-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics