Skip to main content

Detection of One Dimensional Anomalies Using a Vector-Based Convolutional Autoencoder

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12047))

Included in the following conference series:

Abstract

Anomaly detection is important to significant real life entities such as network intrusion and credit card fraud. Existing anomaly detection methods were partially learned the features, which is not appropriate for accurate detection of anomalies. In this study we proposed vector-based convolutional autoencoder (V-CAE) for one dimensional anomaly detection. The core of our model is a linear autoencoder, which is used to construct a low-dimensional manifold of feature vectors for normal data. At the same time, we used vector-based convolutional neural network (V-CNN) to extract the features from vector data before and after the linear autoencoder that makes the model learned deep features for efficient anomaly detection. This unsupervised learning method used only normal data in the training phase. We used the combined abnormal score calculated from two reconstruction errors: (i) error between the input and output of the whole architecture and (ii) error between the input and output of the linear encoder. Compared with the nine state-of-the-arts methods, our proposed V-CAE shows effective and stable results of AUC with 0.996 in estimating anomalies based on several benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dufrenois, F.: A one-class kernel fisher criterion for outlier detection. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 982–994 (2015)

    Article  MathSciNet  Google Scholar 

  2. Potluri, S., Diedrich, C.: Accelerated deep neural networks for enhanced intrusion detection system. In: 21st International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8. IEEE Press, New York (2016)

    Google Scholar 

  3. Kim, J., Shin, N., Jo, S.-Y., Kim, S.-H.: Method of intrusion detection using deep neural network. In: 4th International Conference on Big Data and Smart Computing, pp. 313–316. IEEE Press, New York (2017)

    Google Scholar 

  4. Alom, M.Z., Bontupalli, V., Taha, T.M.: Intrusion detection using deep belief networks. In: National Aerospace and Electronics Conference, pp. 339–344. IEEE Press, New York (2015)

    Google Scholar 

  5. Qu, F., Zhang, J.-T., Shao, Z.-T., Qi, S.-Z.: Intrusion detection model based on deep belief. In: the 2017 VI International Conference on Network, Communication and Computing, pp. 97–101. ACM Press, New York(2017)

    Google Scholar 

  6. Kavitha, M.S., Kurita, T., Park, S.-Y., Chien, S.-I., Bae, J.-S., Ahn, B.-C.: Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells. PLoS ONE 12(12), 1–18 (2017)

    Article  Google Scholar 

  7. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for miningoutliers from large data sets. ACM SIGMOD Rec. 29(2), 427–438 (2000)

    Article  Google Scholar 

  8. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. ACM SIGMOD Rec. 29(2), 93–104 (2000)

    Article  Google Scholar 

  9. Kriegel, H.P., Zimek, A.: Angle-based outlier detection in high-dimensional data. In: 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 444–452. ACM Press, New York (2008)

    Google Scholar 

  10. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: International Conference on Data Mining, pp. 413–422. IEEE Press, New York (2008)

    Google Scholar 

  11. He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recogn. Lett. 24(9–10), 1641–1650 (2003)

    Article  Google Scholar 

  12. Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal. Data Min.: ASA Data Sci. J. 5(5), 363–387 (2012)

    Article  MathSciNet  Google Scholar 

  13. Ro, K., Zou, C., Wang, Z., Yin, G.: Outlier detection for high-dimensionaldata. Biometrika 102(3), 589–599 (2015)

    Article  MathSciNet  Google Scholar 

  14. Pang, G., Cao, L., Chen, L., Liu, H.: Learning homophily couplings from Non-IID data for joint feature selection and noise-resilient outlier detection. In: 26th International Joint Conference on Artificial Intelligence, pp. 2585–2591. Morgan Kaufmann Press, San Francisco (2017)

    Google Scholar 

  15. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data Min. Knowl. Discov. 29(3), 626–688 (2015)

    Article  MathSciNet  Google Scholar 

  16. Radovanović, M., Nanopoulos, A., Ivanović, M.: Reverse nearest neighbors in unsupervised distance-based outlier detection. IEEE Trans. Knowl. Data Eng. 27(5), 1369–1382 (2015)

    Article  Google Scholar 

  17. Fujimaki, R., Yairi, T., Machida, K.: An anomaly detection method for spacecraft using relevance vector learning. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 785–790. Springer, Heidelberg (2005). https://doi.org/10.1007/11430919_92

    Chapter  Google Scholar 

  18. Khreich, W., Khosravifar, B., Hamou-Lhadj, A., Talhi, C.: An anomaly detection system based on variable N-gram features and one-class SVM. Inf. Softw. Technol. 91, 186–197 (2017)

    Article  Google Scholar 

  19. Tax, D.M.J., Duin, R.P.W.: Support vector domain description. Pattern Recogn. Lett. 20(11–13), 1191–1199 (1999)

    Article  Google Scholar 

  20. Yang, X., Latecki, L.J., Pokrajac, D.: Outlier detection with globally optimal exemplar-based GMM. In: SIAM International Conference on Data Mining, pp. 145–154. SIAM Press, Philadelphia (2009)

    Google Scholar 

  21. Liu, F.-T., Ting, K.-M., Zhou, Z.-H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 6(1), 1–39 (2012)

    Article  Google Scholar 

  22. Sun, G., Cong, Y., Xu, X.: Active lifelong learning with “watchdog”. In: The 32th AAAI Conference on Artificial Intelligence, pp. 4107–4114. AAAI Press, Palo Alto (2018)

    Google Scholar 

  23. Lazarevic, A., Kumar, V.: Feature bagging for outlier detection. In: 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining Table of Contents, pp. 157–166. ACM Press, New York (2005)

    Google Scholar 

  24. Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. SIGMOD Rec. 29(2), 93–104 (2000)

    Article  Google Scholar 

  25. Yeung, D.-Y., Chow, C.: Parzen-window network intrusion detectors. In: Object Recognition Supported by User Interaction for Service Robots, vol. 4, no. 4, pp. 385–388 (2002)

    Google Scholar 

  26. Adler, A., Elad, M., Hel-Or, Y., Rivlin, E.: Sparse coding with anomaly detection. Signal Process. Syst. 79(2), 179–188 (2015)

    Article  Google Scholar 

  27. Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2011), pp. 3449–3456. IEEE Press, New York (2011)

    Google Scholar 

  28. Radovanovi, M., Nanopoulos, A., Ivanovi, M.: Reverse nearest neighbors in unsupervised distance-based outlier detection. IEEE Trans. Knowl. Data Eng. 27(5), 1369–1382 (2015)

    Article  Google Scholar 

  29. You, C., Robinson, D.P., Vidal, R.: Provable self-representation based outlier detection in a union of subspaces. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), pp. 4323–4332. IEEE Press, New York (2017)

    Google Scholar 

  30. Hou, D.-D., Cong, Y., Sun, G., Liu, J.: Anomaly detection via adaptive greedy model. Neurocomputing 330, 369–379 (2019)

    Article  Google Scholar 

  31. Analysis of credit card default dataset of Taiwan for machine learning. https://github.com/KaushikJais/Credit-Card-Default/blob/master/Credit%20Card%20Default%20(Final%20Submission)%20(1).ipynb. Accessed 19 Feb 2019

Download references

Ackknowledgement

This work was partly supported by JSPS KAKENHI Grant Number 16K00239.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qien Yu or Takio Kurita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, Q., Kavitha, M., Kurita, T. (2020). Detection of One Dimensional Anomalies Using a Vector-Based Convolutional Autoencoder. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12047. Springer, Cham. https://doi.org/10.1007/978-3-030-41299-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41299-9_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41298-2

  • Online ISBN: 978-3-030-41299-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics