Skip to main content

Nanotechnology and Waste Water Treatment

  • Chapter
  • First Online:
Nanoagronomy

Abstract

Water is one of the most precious and limited resource on the planet earth, that is continuously recycled through the water cycle. Several types of pollutants including organic, inorganic materials, microorganisms, industrial waste and many other toxic substances are the major causes of water pollution. Being an essential and valued compound for life, water plays an important role in world’s economy. About 70% of the fresh water is used in agricultural practices, just because of overexploitation and water pollution, the world is facing serious problems of fresh water shortage. To overcome this water shortage, across the world several methods have been devised to treat the contaminated water before its discharge into the ecosystem. Amongst all the recent techniques nanotechnology sounds to be a promising and most advanced technology that is used for the purification of waste water. Nanomaterials have immense applications in different fields of science and these are considered as one of the significant materials in the remediation of waste water and contaminated sites. Nanomaterials are considered most significant and appropriate for water treatment and purification as they are highly reactive, have great surface area to volume ratio and have a good affinity for target substances and their extremely small size makes them most appropriate purification agents. Nanofibers and nanomembranes are the most advanced forms of nanomaterials that are highly effective in removing the contaminants from the waste water. Despite all these benefits, there is a great need to further investigate the impact of nanomaterials on human health and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Majid M, Ooi B (2011) Functionalized PSf/SiO2 nanocomposite membrane for oil-in-water emulsion separation. Desalination 268(1–3):266–269

    Article  CAS  Google Scholar 

  • Akin I, Arslan G, Tor A, Ersoz M, Cengeloglu Y (2012) Arsenic (V) removal from underground water by magnetic nanoparticles synthesized from waste red mud. J Hazard Mater 235:62–68

    Article  PubMed  CAS  Google Scholar 

  • Ali I, Jain C (1998) Groundwater contamination and health hazards by some of the most commonly used pesticides. Curr Sci 75(10):1011–1014

    CAS  Google Scholar 

  • Aredes S, Klein B, Pawlik M (2012) The removal of arsenic from water using natural iron oxide minerals. J Clean Prod 29:208–213

    Article  CAS  Google Scholar 

  • Arthanareeswaran G, Devi TS, Raajenthiren M (2008) Effect of silica particles on cellulose acetate blend ultrafiltration membranes: Part I. Sep Purif Technol 64(1):38–47

    Article  CAS  Google Scholar 

  • Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, Moon MC, Yu IJ (2012) Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotech 10(1):14

    Article  CAS  Google Scholar 

  • Azrague K, Aimar P, Benoit-Marquie F, Maurette M (2007) A new combination of a membrane and a photocatalytic reactor for the depollution of turbid water. Appl Catal Environ 72(3–4):197–204

    Article  CAS  Google Scholar 

  • Bae TH, Tak TM (2005) Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J Membr Sci 249(1–2):1–8

    CAS  Google Scholar 

  • Banerjee SS, Chen DH (2007) Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J Hazard Mater 147(3):792–799

    Article  CAS  PubMed  Google Scholar 

  • Brammer H, Ravenscroft P (2009) Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia. Environ Int 35(3):647–654

    Article  CAS  PubMed  Google Scholar 

  • Brittany L, Carino V, Kuo J, Leong L, Ganesh R (2006) Adsorption of organic Compounds to metal oxide nanoparticles. Paper presented at the Conference presentation is part of: General Environmental

    Google Scholar 

  • Cao X, Ma J, Shi X, Ren Z (2006) Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl Surf Sci 253(4):2003–2010

    Article  CAS  Google Scholar 

  • Chang YC, Chen DH (2005) Adsorption kinetics and thermodynamics of acid dyes on a carboxymethylated chitosan‐conjugated magnetic nano‐adsorbent. Macromol Biosci 5(3):254–261

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Chang JC, Chen AH (2011) Competitive biosorption of azo dyes from aqueous solution on the templated crosslinked-chitosan nanoparticles. J Hazard Mater 185(1):430–441

    Article  CAS  PubMed  Google Scholar 

  • Chorawalaa KK, Mehta MJ (2015) Applications of nanotechnology in wastewater treatment. Int J Innov Emerg Res Eng 2(1):21–26

    Google Scholar 

  • Chou WL, Yu DG, Yang MC (2005) The preparation and characterization of silver‐loading cellulose acetate hollow fiber membrane for water treatment. Polym Adv Tech 16(8):600–607

    Article  CAS  Google Scholar 

  • Clemente Z, Castro V, Jonsson C, Fraceto L (2012) Ecotoxicology of nano-TiO2–an evaluation of its toxicity to organisms of aquatic ecosystems. Int J Environ Res 6(1):33–50

    CAS  Google Scholar 

  • Condon JB (2006) Surface area and porosity determinations by physisorption: measurements and theory. Elsevier, Amsterdam

    Google Scholar 

  • De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539

    Article  PubMed  CAS  Google Scholar 

  • Deliyanni E, Bakoyannakis D, Zouboulis A, Matis K (2003) Sorption of As (V) ions by akaganeite-type nanocrystals. Chemosphere 50(1):155–163

    Article  CAS  PubMed  Google Scholar 

  • Diallo MS, Christie S, Swaminathan P, Johnson JH, Goddard WA (2005) Dendrimer enhanced ultrafiltration. 1. Recovery of Cu (II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ Sci Tech 39(5):1366–1377

    Article  CAS  Google Scholar 

  • El Rahman A, Gepreel M (2013) Nanotechnology applications in water treatment: future avenues and challenges: a review. Paper presented at the 6th International Perspective on Water Resources and the Environment Confernce, Izmir, Turkey

    Google Scholar 

  • EPA (1999) Alternative disinfectants and oxidants guidance manual. Disinfectant use in water treatment. EPA, Washington, DC

    Google Scholar 

  • EPA (2009) Fact sheet. Emerging contaminants–nanomaterials. Solid waste and emergency response (5106P): EPA 505-F-09-011. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Fauré J, Lachenal G, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, Kirchhoff F, Raposo G, Garin J, Sadoul R (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31(4):642–648

    Article  PubMed  CAS  Google Scholar 

  • Faust SD, Aly OM (2018) Chemistry of water treatment. CRC Press, Boca Raton, FL

    Google Scholar 

  • Feng C, Khulbe K, Matsuura T, Tabe S, Ismail A (2013) Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Sep Purif Technol 102:118–135

    Article  CAS  Google Scholar 

  • Fernandes SC, Sadocco P, Alonso-Varona A, Palomares T, Eceiza A, Silvestre AJ, Mondragon I, Freire CS (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5(8):3290–3297

    Article  CAS  PubMed  Google Scholar 

  • Friedmann D, Mendive C, Bahnemann D (2010) TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl Catal Environ 99(3–4):398–406

    Article  CAS  Google Scholar 

  • Gao Y, Wahi R, Kan A, Falkner J, Colvin V, Tomson M (2004) Adsorption of cadmium on anatase nanoparticles effect of crystal size and pH. Langmuir 20(22):9585–9593

    Article  CAS  PubMed  Google Scholar 

  • Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotech Sci Appl 8:1

    Article  CAS  Google Scholar 

  • Goodman GL (2011) Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York, NY

    Google Scholar 

  • Goswami A, Raul P, Purkait M (2012) Arsenic adsorption using copper (II) oxide nanoparticles. Chem Eng Res Design 90(9):1387–1396

    Article  CAS  Google Scholar 

  • Hashim DP, Narayanan NT, Romo-Herrera JM, Cullen DA, Hahm MG, Lezzi P, Suttle JR, Kelkhoff D, Muñoz-Sandoval E, Ganguli S, Roy AK, Smith D, Vajtai R, Sumpter BG, Meunier V, Terrones H, Terrones M, Ajayan PM (2012) Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Sci Rep 2:363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoet PH, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles–known and unknown health risks. J Nanobiotech 2(1):12

    Article  CAS  Google Scholar 

  • Hossain F, Perales-Perez OJ, Hwang S, Roman F (2014) Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci Total Environ 466–467:1047–1059

    Article  PubMed  CAS  Google Scholar 

  • Jackson P, Jacobsen NR, Baun A, Birkedal R, Kühnel D, Jensen KA, Vogel U, Wallin H (2013) Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 7(1):154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jagadevan S, Jayamurthy M, Dobson P, Thompson IP (2012) A novel hybrid nano zerovalent iron initiated oxidation–biological degradation approach for remediation of recalcitrant waste metalworking fluids. Water Res 46(7):2395–2404

    Article  CAS  PubMed  Google Scholar 

  • Jain P, Pradeep T (2005) Potential of silver nanoparticle‐coated polyurethane foam as an antibacterial water filter. Biotech Bioeng 90(1):59–63

    Article  CAS  Google Scholar 

  • Jung JY, Chung YC, Shin HS, Son DH (2004) Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonium exchange of zeolite in modified SBR process. Water Res 38(2):347–354

    Article  CAS  PubMed  Google Scholar 

  • Karim MR, Rhodes ER, Brinkman N, Wymer L, Fout GS (2009) New electropositive filter for concentrating enteroviruses and noroviruses from large volumes of water. Appl Environ Microbiol 75(8):2393–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keuter V, Gehrke I (2012) Development of multibarrier systems consisting of nano-enhanced membranes and UV-leds for water purification applications. Proc Eng 44:544–545

    Article  Google Scholar 

  • Khajeh M, Laurent S, Dastafkan K (2013) Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem Rev 113(10):7728–7768

    Article  CAS  PubMed  Google Scholar 

  • Kim ES, Deng B (2011) Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications. J Membr Sci 375(1–2):46–54

    Article  CAS  Google Scholar 

  • Kim ES, Hwang G, El-Din MG, Liu Y (2012) Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J Membr Sci 394:37–48

    Article  CAS  Google Scholar 

  • Krasner SW, Weinberg HS, Richardson SD, Pastor SJ, Chinn R, Sclimenti MJ, Onstad GD, Thruston AD (2006) Occurrence of a new generation of disinfection byproduct. Environ Sci Technol 40:7175–7185

    Article  CAS  PubMed  Google Scholar 

  • Krishnan S, Weinman CJ, Ober CK (2008) Advances in polymers for anti-biofouling surfaces. J Mater Chem 18(29):3405–3413

    Article  CAS  Google Scholar 

  • Lalia BS, Guillen E, Arafat HA, Hashaikeh R (2014) Nanocrystalline cellulose reinforced PVDF-HFP membranes for membrane distillation application. Desalination 332(1):134–141

    Article  CAS  Google Scholar 

  • Langlet M, Permpoon S, Riassetto D, Berthomé G, Pernot E, Joud JC (2006) Photocatalytic activity and photo-induced superhydrophilicity of sol–gel derived TiO2 films. J Photochem Photobiol A Chem 181(2–3):203–214

    Article  CAS  Google Scholar 

  • Lee J, Chae HR, Won YJ, Lee K, Lee CH, Lee HH, Kim I-C, Lee JM (2013) Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. J Membr Sci 448:223–230

    Article  CAS  Google Scholar 

  • Lewinsky AA (2007) Hazardous materials and wastewater: treatment, removal and analysis. Nova Publishers, New York, NY

    Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Greden K, Alvarez PJ, Gregory KB, Lowry GV (2010) Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Tech 44(9):3462–3467

    Article  CAS  Google Scholar 

  • Liu X, Wang M, Zhang S, Pan B (2013) Application potential of carbon nanotubes in water treatment: a review. J Environ Sci 25(7):1263–1280

    Article  CAS  Google Scholar 

  • Masel RI, Masel RI (1996) Principles of adsorption and reaction on solid surfaces, vol 3. John Wiley and Sons, New York, NY

    Google Scholar 

  • Matlochová A, Plachá D, Rapantová N (2013) The application of nanoscale materials in groundwater remediation. Pol J Environ Stud 22(5):1401

    Google Scholar 

  • Mautner A, Lee KY, Lahtinen P, Hakalahti M, Tammelin T, Li K, Bismarck A (2014) Nanopapers for organic solvent nanofiltration. Chem Commun 50(43):5778–5781

    Article  CAS  Google Scholar 

  • Meng ZD, Zhu L, Ye S, Sun Q, Ullah K, Cho KY, Oh WC (2013) Fullerene modification CdSe/TiO2 and modification of photocatalytic activity under visible light. Nanoscale Res Lett 8(1):189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohammed AS, Kapri A, Goel R (2011) Heavy metal pollution: source, impact, and remedies. In: Biomanagement of metal-contaminated soils. Springer, Dordrecht, pp 1–28

    Google Scholar 

  • Nagy A, Harrison A, Sabbani S, Munson RS Jr, Dutta PK, Waldman WJ (2011) Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int J Nanomedicine 6:1833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  PubMed  Google Scholar 

  • Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. ACS Publications, Washington, DC

    Google Scholar 

  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H, ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2(1):1

    Article  CAS  Google Scholar 

  • Ostad E, Wise GJ (2005) Celestial bodies and urinary stones: Isaac Newton (1641–1727)–health and urological problems. BJU Int 95(1):24–26

    Article  PubMed  Google Scholar 

  • Pacheco S, Tapia J, Medina M, Rodriguez R (2006) Cadmium ions adsorption in simulated wastewater using structured alumina–silica nanoparticles. J Noncrys Solids 352(52–54):5475–5481

    Article  CAS  Google Scholar 

  • Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Tech 42(24):9005–9013

    Article  CAS  Google Scholar 

  • Pandey J, Khare R (2016) Biomimetic nanotechnology: putting life into materials. Int J Adv Res Eng Appl Sci 5(8):44–53

    Google Scholar 

  • Patil BBT (2015) Wastewater treatment using nanoparticles. J Adv Chem Eng 5:1–2

    Article  CAS  Google Scholar 

  • Pendergast MM, Dorin RM, Phillip WA, Wiesner U, Hoek EM (2013) Understanding the structure and performance of self-assembled triblock terpolymer membranes. J Membr Sci 444:461–468

    Article  CAS  Google Scholar 

  • Perreault F, De Faria AF, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44(16):5861–5896

    Article  CAS  PubMed  Google Scholar 

  • Petrik L, Missengue R, Fatoba O, Tuffin M, Sachs J (2012) Silver/zeolite nano composite-based clay filters for water disinfection. WRC report (KV 297/12). Water Research Commission, Gezina. ISSN 1790670070

    Google Scholar 

  • Qiu X, Yu H, Karunakaran M, Pradeep N, Nunes SP, Peinemann KV (2012) Selective separation of similarly sized proteins with tunable nanoporous block copolymer membranes. ACS Nano 7(1):768–776

    Article  PubMed  CAS  Google Scholar 

  • Qu X, Brame J, Li Q, Alvarez PJ (2012) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46(3):834–843

    Article  PubMed  CAS  Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946

    Article  CAS  PubMed  Google Scholar 

  • Quang DV, Sarawade PB, Jeon SJ, Kim SH, Kim JK, Chai YG, Kim HT (2013) Effective water disinfection using silver nanoparticle containing silica beads. Appl Surf Sci 266:280–287

    Article  CAS  Google Scholar 

  • Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58(1):224–231

    Article  CAS  Google Scholar 

  • Ren X, Zhao C, Du S, Wang T, Luan Z, Wang J, Hou D (2010) Fabrication of asymmetric poly (m-phenylene isophthalamide) nanofiltration membrane for chromium (VI) removal. J Environ Sci 22(9):1335–1341

    Article  CAS  Google Scholar 

  • Sadeghi KM, Arami M, Gharanjig K (2013) Dye removal from colored‐textile wastewater using chitosan‐PPI dendrimer hybrid as a biopolymer: optimization, kinetic, and isotherm studies. J Appl Polym Sci 127(4):2607–2619

    Article  CAS  Google Scholar 

  • Samanta HS, Das R, Bhattachajee C (2016) Influence of nanoparticles for wastewater treatment-a short review. Austin Chem Eng 3(3):1036

    Google Scholar 

  • Sandia National Laboratories (2003) Desalination and water purification roadmap–a report of the executive committee. DWPR program report. US Department of the Interior, Bureau of Reclamation and Sandia National Laboratories, Albuquerque

    Google Scholar 

  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7(4–5):331–342

    Article  CAS  Google Scholar 

  • Savić R, Luo L, Eisenberg A, Maysinger D (2003) Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300(5619):615–618

    Article  PubMed  CAS  Google Scholar 

  • Shao-feng N, Yong L, Xin-hua X, Zhang-hua L (2005) Removal of hexavalent chromium from aqueous solution by iron nanoparticles. J Zhejiang Univ Sci B 6(10):1022–1027

    Google Scholar 

  • Shen L, Zhao B, Zhang J, Chen J, Zheng H (2010) Virus adsorption onto nano-sized iron oxides as affected by different background solutions. Huan jing ke xue= Huanjing kexue 31(4):983–989

    CAS  PubMed  Google Scholar 

  • Singh R, Smitha MS, Singh SP (2014) The role of nanotechnology in combating multi-drug resistant bacteria. J Nanosci Nanotechnol 14(7):4745–4756

    Article  CAS  PubMed  Google Scholar 

  • Skubal L, Meshkov N, Rajh T, Thurnauer M (2002) Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles. J Photochem Photobiol A Chem 148(1–3):393–397

    Article  CAS  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17):6679–6686

    Article  CAS  Google Scholar 

  • Sun C, Qu R, Ji C, Wang C, Sun Y, Yue Z, Cheng G (2006) Preparation and adsorption properties of crosslinked polystyrene-supported low-generation diethanolamine-typed dendrimer for metal ions. Talanta 70(1):14–19

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Zhao Y, Wang R, Hélix-Nielsen C, Fane A (2013) Desalination by biomimetic aquaporin membranes: review of status and prospects. Desalination 308:34–40

    Article  CAS  Google Scholar 

  • Taurozzi JS, Arul H, Bosak VZ, Burban AF, Voice TC, Bruening ML, Tarabara VV (2008) Effect of filler incorporation route on the properties of polysulfone–silver nanocomposite membranes of different porosities. J Membr Sci 325(1):58–68

    Article  CAS  Google Scholar 

  • Tiwari DK, Behari J, Sen P (2008) Application of nanoparticles in waste water treatment 1. World Appl Sci J 3(3):417

    Google Scholar 

  • Usmania MA, Khan I, Bhatd A, Pillaie RS, Ahmadf N, Haafizg MM, Ovesh M (2017) Current trend in the application of nanoparticles for waste water treatment and purification: a review. Curr Organ Synth 14(2):206–226

    Google Scholar 

  • Vecitis CD, Zodrow KR, Kang S, Elimelech M (2010) Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4(9):5471–5479

    Article  CAS  PubMed  Google Scholar 

  • Wegmann M, Michen B, Graule T (2008) Nanostructured surface modification of microporous ceramics for efficient virus filtration. J Eur Ceram Soc 28(8):1603–1612

    Article  CAS  Google Scholar 

  • Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295(5564):2418–2421

    Article  CAS  PubMed  Google Scholar 

  • Xie W, He F, Wang B, Chung TS, Jeyaseelan K, Armugam A, Tong YW (2013) An aquaporin-based vesicle-embedded polymeric membrane for low energy water filtration. J Mater Chem A 1(26):7592–7600

    Article  CAS  Google Scholar 

  • Yang HY, Han ZJ, Yu SF, Pey KL, Ostrikov K, Karnik R (2013) Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat Commun 4:2220

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Wang P, Wang C, Sun X, Zhang L (2012) Thermostable PPESK/TiO2 nanocomposite ultrafiltration membrane for high temperature condensed water treatment. Desalination 299:35–43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Butt, B.Z. (2020). Nanotechnology and Waste Water Treatment. In: Javad, S. (eds) Nanoagronomy. Springer, Cham. https://doi.org/10.1007/978-3-030-41275-3_9

Download citation

Publish with us

Policies and ethics