Skip to main content

Calculating, Using and Improving Individual Breast Cancer Risk Estimates

  • Chapter
  • First Online:
Breast MRI for High-risk Screening

Abstract

Breast cancer risk assessment is important in order to identify individuals at extremely high risk who would be potential candidates for prophylactic surgery or preventive therapy, those at a moderately enhanced risk who might benefit from enhanced surveillance and potentially those at sufficiently low risk as to not require surveillance or risk management. Women with a substantial family history of the disease qualify for genetic testing of high-risk BRCA1/2 genetic alterations. For women without mutations in high-risk genes, or without a large family history, the current state of the art for risk assessment combines classical questionnaire risk factors (including information on hormonal and reproductive factors), mammographic density and genetic testing through polygenic risk scores. Risk models for these components alone and their combination have shown a degree of accuracy in prediction of invasive breast cancer risk. In this chapter, we consider how risk models are calculated, their potential clinical use and the targets for research in the future to improve risk assessment in order to better inform risk management and surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Segregation analysis. The process of fitting formal genetic models to data on expressed disease characteristics (phenotype) in biological family members in order to determine the most likely mode of inheritance for the trait or disease under study (https://www.cancer.gov/publications/dictionaries/genetics-dictionary/def/segregation-analysis).

  2. 2.

    The C-statistic (sometimes called the ‘concordance’ statistic or C-index) for a binary outcome, such as disease or not, gives the probability a randomly selected patient with disease will have a higher risk score than a patient without disease. For a survival outcome, such as time to death, it gives the probability that the person with the higher risk score will live longer [48].

Abbreviations

AIs:

Aromatase inhibitors

AUC:

Area under the curve

BC:

Breast cancer

BCSC:

Breast Cancer Surveillance Consortium

BI-RADS:

Breast Imaging Reporting and Data System

BMI:

Body mass index

BPE:

Background parenchymal enhancement

ER:

Oestrogen receptor

HER2:

Human epidermal growth factor receptor 2

MRI:

Magnetic resonance imaging

ROC:

Receiver operating characteristic

SERMs:

Selective oestrogen receptor modulators

SNP:

Single nucleotide polymorphism

References

  1. Gail MH, Brinton LA, Byar DP et al (1989) Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81:1879–1886

    CAS  PubMed  Google Scholar 

  2. Claus EB, Risch N, Thompson WD, Claus EB, Risch N, Thompson WD (1993) The calculation of breast cancer risk for women with a first degree family history of ovarian cancer. Breast Cancer Res Treat 28:115–120

    CAS  PubMed  Google Scholar 

  3. Tyrer J, Duffy SW, Cuzick J (2004) A breast cancer prediction model incorporating familial and personal risk factors. Stat Med 23:1111–1130

    PubMed  Google Scholar 

  4. Antoniou AC, Cunningham AP, Peto J et al (2008) The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer 98:1457–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Easton DF, Pharoah PD, Antoniou AC et al (2015) Gene-panel sequencing and the prediction of breast-cancer risk. New Engl J Med 372:2243–2257

    CAS  PubMed  Google Scholar 

  6. Teams FC (2010) Mammographic surveillance in women younger than 50 years who have a family history of breast cancer: tumour characteristics and projected effect on mortality in the prospective, single-arm, FH01 study. Lancet Oncol 11:1127–1134

    Google Scholar 

  7. Pashayan N, Duffy SW, Chowdhury S et al (2011) Polygenic susceptibility to prostate and breast cancer: implications for personalised screening. Br J Cancer 104:1656–1663

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Duffy SW (2003) Screening for breast cancer. In: Evidence-based oncology. BMJ Publishing Group, London, pp 109–117

    Google Scholar 

  9. Evans DG, Howell A (2007) Breast cancer risk-assessment models. Breast Cancer Res 9:213

    PubMed  PubMed Central  Google Scholar 

  10. Amir E, Freedman OC, Seruga B, Evans DG (2010) Assessing women at high risk of breast cancer: a review of risk assessment models. J Natl Cancer Inst 102:680–691

    PubMed  Google Scholar 

  11. Gail MH, Mai PL (2010) Comparing breast cancer risk assessment models. J Natl Cancer Inst 102:665–668

    PubMed  Google Scholar 

  12. Cintolo-Gonzalez JA, Braun D, Blackford A et al (2017) Breast cancer risk models: a comprehensive overview of existing models, validation, and clinical applications. Breast Cancer Res Treat 164:263–284

    PubMed  Google Scholar 

  13. Parmigiani G, Berry DA, Aguilar O (1998) Determining carrier probabilities for breast Cancer-Susceptibility genes BRCA1 and BRCA2. Am J Hum Genet 62:145–158

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen J, Pee D, Ayyagari R et al (2006) Projecting absolute invasive breast cancer risk in white women with a model that includes mammographic density. J Natl Cancer Inst 98:1215–1226

    PubMed  Google Scholar 

  15. Tice JA, Cummings SR, Smith-Bindman R, Ichikawa L, Barlow WE, Kerlikowske K (2008) Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model. Ann Intern Med 148:337–347

    PubMed  PubMed Central  Google Scholar 

  16. Mealiffe ME, Stokowski RP, Rhees BK, Prentice RL, Pettinger M, Hinds DA (2010) Assessment of clinical validity of a breast cancer risk model combining genetic and clinical information. J Natl Cancer Inst 102:1618–1627

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Maas P, Barrdahl M, Joshi AD et al (2016) Breast cancer risk from modifiable and nonmodifiable risk factors among white women in the United States. JAMA Oncol 2:1295–1302

    PubMed  PubMed Central  Google Scholar 

  18. Tice JA, Miglioretti DL, Li CS, Vachon CM, Gard CC, Kerlikowske K (2015) Breast density and benign breast disease: risk assessment to identify women at high risk of breast cancer. J Clin Oncol 33:8869–3143

    Google Scholar 

  19. Vachon CM, Pankratz VS, Scott CG et al (2015) The contributions of breast density and common genetic variation to breast cancer risk. J Natl Cancer Inst 107:pii dju397

    Google Scholar 

  20. Brentnall AR, Harkness EF, Astley SM et al (2015) Mammographic density adds accuracy to both the Tyrer-Cuzick and gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res 17:147

    PubMed  PubMed Central  Google Scholar 

  21. Cuzick J, Brentnall AR, Segal C et al (2017) Impact of a panel of 88 single nucleotide polymorphisms on the risk of breast cancer in High-Risk women: results from two randomized tamoxifen prevention trials. J Clin Oncol 35:743–750

    CAS  PubMed  Google Scholar 

  22. Tyrer-Cuzick Model (2017). www.ems-trials.org/riskevaluator. Accessed 1 November 2017

  23. van Veen EM, Brentnall AR, Byers H et al (2018) Use of single-nucleotide polymorphisms and mammographic density plus classic risk factors for breast cancer risk prediction. JAMA Oncol 4:476–482

    PubMed  PubMed Central  Google Scholar 

  24. Kuchenbaecker KB, Hopper JL, Barnes DR et al (2017) Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 317:2402–2416

    CAS  PubMed  Google Scholar 

  25. Antoniou AC, Hardy R, Walker L et al (2008) Predicting the likelihood of carrying a BRCA1 or BRCA2 mutation: validation of BOADICEA, BRCAPRO, IBIS, myriad and the manchester scoring system using data from UK genetics clinics. J Med Genet 45:425–431

    CAS  PubMed  Google Scholar 

  26. Manchanda R, Patel S, Gordeev VS et al (2018) Cost-effectiveness of population-based BRCA1, BRCA2, RAD51C, RAD51D, BRIP1, PALB2 mutation testing in unselected general population women. J Natl Cancer Inst 10:714–725

    Google Scholar 

  27. Lee AJ, Cunningham AP, Tischkowitz M et al (2016) Incorporating truncating variants in PALB2, CHEK2, and ATM into the BOADICEA breast cancer risk model. Genet Med 18:1190–1198

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tabar L, Fagerberg G, Chen HH et al (1995) Efficacy of breast cancer screening by age. new results from the swedish Two-County trial. Cancer 75:2507–2517

    CAS  PubMed  Google Scholar 

  29. Nixon AJ, Neuberg D, Hayes DF et al (1994) Relationship of patient age to pathologic features of the tumor and prognosis for patients with stage I or II breast cancer. J Clin Oncol 12:888–894

    CAS  PubMed  Google Scholar 

  30. National Institute for Clinical Excellence (2013) Familial breast cancer: classification and care of people at risk of familial breast cancer and management of breast cancer and related risks in people with a family history of breast cancer. clinical guidelines, CG164. https://www.nice.org.uk/guidance/cg164. Accessed 30 Jun 2020

  31. Saslow D, Boetes C, Burke W et al (2007) American cancer society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 57:75–89

    PubMed  Google Scholar 

  32. Cuzick J, Sestak I, Bonanni B et al (2013) Selective oestrogen receptor modulators in prevention of breast cancer: an updated meta-analysis of individual participant data. Lancet 381:1827–1834

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cuzick J, Sestak I, Forbes JF et al (2014) Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): an international, double-blind, randomised placebo-controlled trial. Lancet 383:1041–1048

    CAS  PubMed  Google Scholar 

  34. Waters EA, McNeel TS, Stevens WM, Freedman AN (2012) Use of tamoxifen and raloxifene for breast cancer chemoprevention in 2010. Breast Cancer Res Treat 134:875–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hartmann LC, Degnim AC, Santen RJ, Dupont WD, Ghosh K (2014) Atypical hyperplasia of the breast – risk assessment and management options. N Engl J Med 372:78–89

    Article  CAS  Google Scholar 

  36. Pankratz VS, Degnim AC, Frank RD et al (2015) Model for individualized prediction of breast cancer risk after a benign breast biopsy. J Clin Oncol 33:923–929

    Article  PubMed  PubMed Central  Google Scholar 

  37. Smith RA (2011) International programs for the detection of breast cancer. Salud Publica Mex 53:394–404

    PubMed  Google Scholar 

  38. Taplin SH, Thompson RS, Schnitzer F, Anderman C, Immanuel V (1990) Revisions in the risk-based breast cancer screening program at group health cooperative. Cancer 66:812–818

    Article  CAS  PubMed  Google Scholar 

  39. Evans DG, Warwick J, Astley SM et al (2012) Assessing individual breast cancer risk within the U.K. national health service breast screening program: a new paradigm for cancer prevention. Cancer Prev Res (Phila) 5:943–951

    Article  Google Scholar 

  40. Gabrielson M, Eriksson M, Hammarström M et al (2017) Cohort profile: the Karolinska mammography project for risk prediction of breast cancer (KARMA). Int J Epidemiol 46:1740–1741g

    PubMed  PubMed Central  Google Scholar 

  41. PRISMA study. https://www.prisma-studie.nl/. Accessed 30 Jun 2020

  42. Melnikow J, Fenton JJ, Whitlock EP et al (2016) Supplemental screening for breast cancer in women with dense breasts: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med 164:268–278

    PubMed  PubMed Central  Google Scholar 

  43. Rebolj M, Assi V, Brentnall A, Parmar D, Duffy SW (2018) Addition of ultrasound to mammography in the case of dense breast tissue: systematic review and meta-analysis. Br J Cancer 118:1559–1570

    PubMed  PubMed Central  Google Scholar 

  44. Emaus MJ, Bakker MF, Peeters PH et al (2015) MR imaging as an additional screening modality for the detection of breast cancer in women aged 50–75 years with extremely dense breasts: the DENSE trial study design. Radiology 277:527–537

    PubMed  Google Scholar 

  45. Esserman LJ; WISDOM Study and Athena Investigators (2017) The WISDOM Study: breaking the deadlock in the breast cancer screening debate. NPJ Breast Cancer 3:34

    Google Scholar 

  46. My personalized breast screening (MyPeBS). https://mypebs.eu/it/. Accessed 30 Jun 2020

  47. Gail MH, Pfeiffer RM (2005) On criteria for evaluating models of absolute risk. Biostatistics 6:227–239

    PubMed  Google Scholar 

  48. Brentnall AR, Cuzick J (2016) Use of the concordance index for predictors of censored survival data. Stat Methods Med Res 27:2359–2373

    PubMed  PubMed Central  Google Scholar 

  49. Brentnall AR, Cuzick J, Field J, Duffy SW (2015) A concordance index for matched case-control studies with applications in cancer risk: a concordance index for matched case-control studies with applications in cancer risk. Stat Med 34:396–405

    PubMed  Google Scholar 

  50. Ziegler RG, Hoover RN, Pike MC et al (1993) Migration patterns and breast cancer risk in Asian-American women. J Natl Cancer Inst 85:1819–1827

    CAS  PubMed  Google Scholar 

  51. Deapen D, Liu L, Perkins C, Bernstein L, Ross RK (2002) Rapidly rising breast cancer incidence rates among Asian-American women. Int J Cancer 99:747–750

    CAS  PubMed  Google Scholar 

  52. Pike MC, Kolonel LN, Henderson BE et al (2002) Breast cancer in a multiethnic cohort in hawaii and Los Angeles: risk factor-adjusted incidence in japanese equals and in hawaiians exceeds that in whites. Cancer Epidemiol Biomark Prev 11:795–800

    Google Scholar 

  53. Gathani T, Ali R, Balkwill A et al (2013) Ethnic differences in breast cancer incidence in England are due to differences in known risk factors for the disease: prospective study. Br J Cancer 110:224–229

    PubMed  PubMed Central  Google Scholar 

  54. Reeves GK, Pirie K, Beral V, Green J, Spencer E, Bull D (2007) Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ 335:1134

    PubMed  PubMed Central  Google Scholar 

  55. Brentnall AR, Duffy SW, Cuzick J (2017) Breast cancer tumor size and screening effectiveness. N Engl J Med 376:93–95

    Google Scholar 

  56. Keum N, Greenwood DC, Lee DH et al (2015) Adult weight gain and adiposity-related cancers: a dose-response meta-analysis of prospective observational studies. J Natl Cancer Inst 107:pii djv088

    Google Scholar 

  57. Michailidou K, Beesley J, Lindstrom S et al (2015) Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat Genet 47:373–380

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Brentnall AR, Evans DG, Cuzick J (2014) Distribution of breast cancer risk from SNPs and classical risk factors in women of routine screening age in the UK. Br J Cancer 110:827–828

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Michailidou KS, Lindström J, Dennis J et al (2017) Association analysis identifies 65 new breast cancer risk loci. Nature 551:92–94

    PubMed  PubMed Central  Google Scholar 

  60. Rudolph A, Chang-Claude J, Schmidt MK (2016) Gene-environment interaction and risk of breast cancer. Br J Cancer 114:125–133

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Assi V, Warwick J, Cuzick J, Duffy SW (2011) Clinical and epidemiological issues in mammographic density. Nat Rev Clin Oncol 9:33–40

    PubMed  Google Scholar 

  62. Pike MC, Pearce CL (2013) Mammographic density, MRI background parenchymal enhancement and breast cancer risk. Ann Oncol 24:viii37–viii41

    PubMed  PubMed Central  Google Scholar 

  63. Wolfe JN (1976) Breast patterns as an index of risk for developing breast cancer. AJR Am J Roentgenol 126:1130–1137

    CAS  PubMed  Google Scholar 

  64. McCormack VA, Santos Silva I (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomark Prev 15:1159–1169

    Google Scholar 

  65. Gastounioti A, Conant EF, Kontos D (2016) Beyond breast density: a review on the advancing role of parenchymal texture analysis in breast cancer risk assessment. Breast Cancer Res 18:91

    PubMed  PubMed Central  Google Scholar 

  66. Wang C, Brentnall AR, Cuzick J, Harkness EF, Evans DG, Astley S (2017) A novel and fully automated mammographic texture analysis for risk prediction: results from two case-control studies. Breast Cancer Res 19:114

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Trister AD, Buist DSM, Lee CI (2017) Will machine learning tip the balance in breast cancer screening? JAMA Oncol 3:1463–1464

    PubMed  PubMed Central  Google Scholar 

  68. Sung JS, Corben AD, Brooks JD et al (2018) Histopathologic characteristics of background parenchymal enhancement (BPE) on breast MRI. Breast Cancer Res Treat 172:487–496

    PubMed  PubMed Central  Google Scholar 

  69. King V, Brooks JD, Bernstein JL, Reiner AS, Pike MC, Morris EA (2011) Background parenchymal enhancement at breast MR imaging and breast cancer risk. Radiology 260:50–60

    PubMed  Google Scholar 

  70. Engmann NJ, Golmakani MK, Miglioretti DL, Sprague BL, Kerlikowske K (2017) Population-attributable risk proportion of clinical risk factors for breast cancer. JAMA Oncol 3:1228–1236

    PubMed  PubMed Central  Google Scholar 

  71. Sasieni P, Adams J, Cuzick J (2003) Benefit of cervical screening at different ages: evidence from the UK audit of screening histories. Br J Cancer 89:88–93

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kerlikowske K, Zhu W, Tosteson ANA et al; Breast Cancer Surveillance Consortium (2015) Identifying women with dense breasts at high risk for interval cancer. Ann Intern Med 162:673–681

    Google Scholar 

  73. Mavaddat N, Pharoah PD, Blows F et al (2010) Familial relative risks for breast cancer by pathological subtype: a population-based cohort study. Breast Cancer Res Res 12:R10

    Google Scholar 

  74. Antoni S, Sasco A, Santos Silva I, McCormack V (2013) Is mammographic density differentially associated with breast cancer according to receptor status? A meta-analysis. Breast Cancer Res Treat 137:337–347

    PubMed  Google Scholar 

  75. Anderson K, Schwab R, Martinez M (2014) Reproductive risk factors and breast cancer subtypes: a review of the literature. Breast Cancer Res Treat 144:1–10

    PubMed  PubMed Central  Google Scholar 

  76. Islami F, Liu Y, Jemal A et al (2015) Breastfeeding and breast cancer risk by receptor status-a systematic review and meta-analysis. Ann Oncol 26:2398–2407

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kerlikowske K, Gard CC, Tice JA, Ziv E, Cummings SR, Miglioretti DL (2016) Risk factors that increase risk of estrogen receptor-positive and -negative breast cancer. J Natl Cancer Inst 109:djw276

    PubMed Central  Google Scholar 

  78. Pierobon M, Frankenfeld C (2013) Obesity as a risk factor for triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer Res Treat 137:307–314

    Article  PubMed  Google Scholar 

  79. Mavaddat N, Barrowdale D, Andrulis IL et al (2011) Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the consortium of investigators of modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomark Prev 21:134–147

    Article  Google Scholar 

  80. Garcia-Closas M, Couch FJ, Lindstrom S et al (2013) Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nat Genet 45:392–398

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Jung S, Spiegelman D, Baglietto L et al (2013) Fruit and vegetable intake and risk of breast cancer by hormone receptor status. J Natl Cancer Inst 105:219–236

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Aune D, Sen A, Prasad M et al (2016) BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ 353:i2156

    PubMed  PubMed Central  Google Scholar 

  83. Plevritis SK, Munoz D, Kurian AW et al (2018) Association of screening and treatment with breast cancer mortality by molecular subtype in US women, 2000–2012. JAMA 319:154–164

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Duffy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brentnall, A.R., Duffy, S.W. (2020). Calculating, Using and Improving Individual Breast Cancer Risk Estimates. In: Sardanelli, F., Podo, F. (eds) Breast MRI for High-risk Screening. Springer, Cham. https://doi.org/10.1007/978-3-030-41207-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41207-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41206-7

  • Online ISBN: 978-3-030-41207-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics