Skip to main content

Guaranteed Optimal Reachability Control of Reaction-Diffusion Equations Using One-Sided Lipschitz Constants and Model Reduction

  • Conference paper
  • First Online:
Cyber Physical Systems. Model-Based Design (CyPhy 2019, WESE 2019)

Abstract

We show that, for any spatially discretized system of reaction-diffusion, the approximate solution given by the explicit Euler time-discretization scheme converges to the exact time-continuous solution, provided that diffusion coefficient be sufficiently large. By “sufficiently large”, we mean that the diffusion coefficient value makes the one-sided Lipschitz constant of the reaction-diffusion system negative. We apply this result to solve a finite horizon control problem for a 1D reaction-diffusion example. We also explain how to perform model reduction in order to improve the efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(C(T)=O(e^{L_fT})\) where \(L_f\) is the Lipschitz constant associated with vector field f.

  2. 2.

    Note that, in [45], the values of the boundary control are in the full interval [0, 1], not in a finite set U as here. In [45], they focus, not on the bounding of computation errors during integration as here, but on a formal proof that the objective state \(y_f=\theta \) (\(0<\theta <1\)) is reachable in finite time iff \(L<L^*\) for some threshold value \(L^*\).

  3. 3.

    The program, called “OSLator” [31], is implemented in Octave. It is composed of 10 functions and a main script totalling 600 lines of code. The computations are realised in a virtual machine running Ubuntu 18.06 LTS, having access to one core of a 2.3GHz Intel Core i5, associated to 3.5 GB of RAM memory.

  4. 4.

    By comparison, in [2], the error term originating from the POD model reduction is exponential in T (see \(C_1(T,|x|)\) in the proof of Theorem 5.1).

References

  1. Alla, A., Falcone, M., Volkwein, S.: Error analysis for POD approximations of infinite horizon problems via the dynamic programming approach. SIAM J. Control Optim. 55(5), 3091–3115 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alla, A., Saluzzi, L.: A HJB-POD approach for the control of nonlinear PDEs on a tree structure. CoRR, abs/1905.03395 (2019)

    Google Scholar 

  3. Althoff, M.: Reachability analysis of large linear systems with uncertain inputs in the Krylov subspace. CoRR, abs/1712.00369 (2017)

    Google Scholar 

  4. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization. In: Proceedings of the 47th IEEE Conference on Decision and Control, CDC 2008, 9–11 December 2008, Cancún, Mexico, pp. 4042–4048. IEEE (2008)

    Google Scholar 

  5. Aminzare, Z., Shafi, Y., Arcak, M., Sontag, E.D.: Guaranteeing spatial uniformity in reaction-diffusion systems using weighted \(L^2\) norm contractions. In: Kulkarni, V.V., Stan, G.-B., Raman, K. (eds.) A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations, pp. 73–101. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-9041-3_3

    Chapter  Google Scholar 

  6. Aminzare, Z., Sontag, E.D.: Logarithmic Lipschitz norms and diffusion-induced instability. Nonlinear Anal. Theory Methods Appl. 83, 31–49 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aminzare, Z., Sontag, E.D.: Some remarks on spatial uniformity of solutions of reaction-diffusion PDEs. Nonlinear Anal. Theory Methods Appl. 147, 125–144 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arcak, M.: Certifying spatially uniform behavior in reaction-diffusion PDE and compartmental ODE systems. Automatica 47(6), 1219–1229 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barthel, W., John, C., Tröltzsch, F.: Optimal boundary control of a system of reaction diffusion equations. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 90(12), 966–982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bellman, R.: Dynamic Programming, 1st edn. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  11. Berz, M., Hoffstätter, G.: Computation and application of Taylor polynomials with interval remainder bounds. Reliab. Comput. 4(1), 83–97 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliab. Comput. 4(4), 361–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Casas, E., Ryll, C., Tröltzsch, F.: Optimal control of a class of reaction-diffusion systems. Comput. Optim. Appl. 70(3), 677–707 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Le Coënt, A., Fribourg, L.: Guaranteed control of sampled switched systems using semi-Lagrangian schemes and one-sided Lipschitz constants. In: 58th IEEE Conference on Decision and Control, CDC 2019, Nice, France, 11–13 December 2019 (2019)

    Google Scholar 

  15. Court, S., Kunisch, K., Pfeiffer, L.: Hybrid optimal control problems for a class of semilinear parabolic equations. Discret. Contin. Dyn. Syst. 11, 1031–1060 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. da Silva, J.E., Sousa, J.T., Pereira, F.L.: Synthesis of safe controllers for nonlinear systems using dynamic programming techniques. In: 8th International Conference on Physics and Control (PhysCon 2017). IPACS Electronic Library (2017)

    Google Scholar 

  17. Dahlquist, G.: Stability and error bounds in the numerical integration of ordinary differential equations. Ph.D. thesis, Almqvist & Wiksell (1958)

    Google Scholar 

  18. Falcone, M., Giorgi, T.: An approximation scheme for evolutive Hamilton-Jacobi equations. In: McEneaney, W.M., Yin, G.G., Zhang, Q. (eds.) Stochastic Analysis, Control, Optimization and Applications. Systems & Control: Foundations & Applications. Springer, Boston (1999). https://doi.org/10.1007/978-1-4612-1784-8_17

    Chapter  Google Scholar 

  19. Fan, C., Kapinski, J., Jin, X., Mitra, S.: Simulation-driven reachability using matrix measures. ACM Trans. Embedded Comput. Syst. (TECS) 17(1), 21 (2018)

    Google Scholar 

  20. Finotti, H., Lenhart, S., Van Phan, T.: Optimal control of advective direction in reaction-diffusion population models. Evol. Equ. Control Theory 1, 81–107 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2_19

    Chapter  MATH  Google Scholar 

  22. Griesse, R., Volkwein, S.: A primal-dual active set strategy for optimal boundary control of a nonlinear reaction-diffusion system. SIAM J. Control Optim. 44(2), 467–494 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Han, Z., Krogh, B.H.: Reachability analysis of hybrid control systems using reduced-order models. In: Proceedings of the 2004 American Control Conference, vol. 2, pp. 1183–1189, June 2004

    Google Scholar 

  24. Han, Z., Krogh, B.H.: Reachability analysis of large-scale affine systems using low-dimensional polytopes. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 287–301. Springer, Heidelberg (2006). https://doi.org/10.1007/11730637_23

    Chapter  MATH  Google Scholar 

  25. Kalise, D., Kröner, A.: Reduced-order minimum time control of advection-reaction-diffusion systems via dynamic programming. In: 21st International Symposium on Mathematical Theory of Networks and Systems, Groningen, Netherlands, July 2014, pp. 1196–1202 (2014)

    Google Scholar 

  26. Kalise, D., Kunisch, K.: Polynomial approximation of high-dimensional Hamilton-Jacobi-Bellman equations and applications to feedback control of semilinear parabolic PDEs. SIAM J. Sci. Comput. 40(2), A629–A652 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kapela, T., Zgliczyński, P.: A Lohner-type algorithm for control systems and ordinary differential inclusions. Discret. Contin. Dyn. Syst. B 11(2), 365–385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Koto, T.: IMEX Runge-Kutta schemes for reaction-diffusion equations. J. Comput. Appl. Math. 215(1), 182–195 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kühn, W.: Rigorously computed orbits of dynamical systems without the wrapping effect. Computing 61(1), 47–67 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kunisch, K., Volkwein, S., Xie, L.: HJB-POD-based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 3(4), 701–722 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Le Coënt, A.: OSLator 1.0 (2019). https://bitbucket.org/alecoent/oslator/src/master/

  32. Le Coënt, A., Alexandre dit Sandretto, J., Chapoutot, A., Fribourg, L., De Vuyst, F., Chamoin, L.: Distributed control synthesis using Euler’s method. In: Hague, M., Potapov, I. (eds.) RP 2017. LNCS, vol. 10506, pp. 118–131. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67089-8_9

    Chapter  Google Scholar 

  33. Le Coënt, A., De Vuyst, F., Chamoin, L., Fribourg, L.: Control synthesis of nonlinear sampled switched systems using Euler’s method. In: Proceedings of International Workshop on Symbolic and Numerical Methods for Reachability Analysis (SNR 2017), EPTCS, vol. 247, pp. 18–33. Open Publishing Association (2017)

    Google Scholar 

  34. Le Coënt, A., De Vuyst, F., Rey, C., Chamoin, L., Fribourg, L.: Guaranteed control synthesis of switched control systems using model order reduction and state-space bisection. In: Proceedings of International Workshop on Synthesis of Complex Parameters (SYNCOP 2015), OASICS, vol. 44, pp. 33–47. SchlossDagstuhl – Leibniz-Zentrum für Informatik (2015)

    Google Scholar 

  35. Lohner, R.J.: Enclosing the solutions of ordinary initial and boundary value problems. Comput. Arith. 255–286 (1987)

    Google Scholar 

  36. Lozinskii, S.M.: Error estimate for numerical integration of ordinary differential equations. i. Izv. Vyssh. Uchebn. Zaved. Mat. (5), 52–90 (1958)

    Google Scholar 

  37. Maidens, J., Arcak, M.: Reachability analysis of nonlinear systems using matrix measures. IEEE Trans. Autom. Control 60(1), 265–270 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mitchell, I., Bayen, A.M., Tomlin, C.J.: Validating a Hamilton-Jacobi approximation to hybrid system reachable sets. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 418–432. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45351-2_34

    Chapter  MATH  Google Scholar 

  39. Mitchell, I.M., Tomlin, C.: Overapproximating reachable sets by Hamilton-Jacobi projections. J. Sci. Comput. 19(1–3), 323–346 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Moore, R.: Interval Analysis. Prentice Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  41. Moura, S.J., Fathy, H.K.: Optimal boundary control & estimation of diffusion-reaction PDEs. In: Proceedings of the 2011 American Control Conference, pp. 921–928, June 2011

    Google Scholar 

  42. Moura, S.J., Fathy, H.K.: Optimal boundary control of reaction-diffusion partial differential equations via weak variations. J. Dyn. Syst. Meas. Control Trans. ASME 135(3), 6 (2013)

    Article  Google Scholar 

  43. Nedialkov, N.S., Jackson, K., Corliss, G.: Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68 (1999)

    MathSciNet  MATH  Google Scholar 

  44. Nedialkov, N.S., Kreinovich, V., Starks, S.A.: Interval arithmetic, affine arithmetic, Taylor series methods: why, what next? Numer. Algorithms 37(1–4), 325–336 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pouchol, C., Trélat, E., Zuazua, E.: Phase portrait control for 1D monostable and bistable reaction-diffusion equations. CoRR, abs/1709.07333 (2017)

    Google Scholar 

  46. Reissig, G., Rungger, M.: Symbolic optimal control. IEEE Trans. Autom. Control 64(6), 2224–2239 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rungger, M., Reissig, G.: Arbitrarily precise abstractions for optimal controller synthesis. In: 56th IEEE Annual Conference on Decision and Control, CDC 2017, Melbourne, Australia, 12–15 December 2017, pp. 1761–1768 (2017)

    Google Scholar 

  48. Saluzzi, L., Alla, A., Falcone, M.: Error estimates for a tree structure algorithm solving finite horizon control problems. CoRR, abs/1812.11194 (2018)

    Google Scholar 

  49. Schürmann, B., Althoff, M.: Optimal control of sets of solutions to formally guarantee constraints of disturbed linear systems. In: 2017 American Control Conference, ACC 2017, Seattle, WA, USA, 24–26 May 2017, pp. 2522–2529 (2017)

    Google Scholar 

  50. Schürmann, B., Kochdumper, N., Althoff, M.: Reachset model predictive control for disturbed nonlinear systems. In: 57th IEEE Conference on Decision and Control, CDC 2018, Miami, FL, USA, 17–19 December 2018, pp. 3463–3470 (2018)

    Google Scholar 

  51. Söderlind, G.: The logarithmic norm. History and modern theory. BIT Numer. Math. 46(3), 631–652 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sontag, E.D.: Contractive systems with inputs. In: Willems, J.C., Hara, S., Ohta, Y., Fujioka, H. (eds.) Perspectives in Mathematical System Theory, Control, and Signal Processing. LNCIS, vol. 398, pp. 217–228. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Le Coënt .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Proof of Lemma 1

Proof

It is easy to check that \(0< \alpha _u< 1\) when \(\frac{|\lambda _u|G_u}{4}<1\).

Let \(t^* := G_u(1-\alpha _u)\). Let us first prove \(\delta _{e_0}(t)\leqslant e_0\) for \(t=t^*\). We have:

$$-\frac{1}{2}|\lambda _{u}| G_{u} +(2+\frac{1}{2}|\lambda _{u}|G_{u})\alpha _u-\alpha _u^2 = 0.$$

Hence:

$$\frac{1}{2G_{u}(1-\alpha _u)}\lambda _{u} G_{u}^2(1-\alpha _u)^2 +2\alpha _u-\alpha _u^2 = 0,$$

i.e.

$$\frac{1}{2t^*}\lambda _{u} (t^*)^2 +2\alpha _u-\alpha _u^2 = 0.$$

We have: \(-\frac{1}{4G_u^2t^*}\lambda _{u} (t^*)^4e^{\lambda _ut^*}\geqslant 0\). It follows:

$$\frac{1}{2t^*}\lambda _{u} (t^*)^2 +2\alpha _u-\alpha _u^2-\frac{1}{4G_u^2t^*}\lambda _{u} (t^*)^4 e^{\lambda _ut^*}\geqslant 0.$$

Hence:

$$1+\frac{1}{2t^*}\lambda _{u} (t^*)^2 -\frac{1}{G_{u}^2}((t^*)^2+\frac{1}{4t^*}\lambda _{u} (t^*)^4e^{\lambda _ut^*}) \geqslant 0.$$

By multiplying by \(t^*\):

$$(t^*+\frac{1}{2}\lambda _{u} (t^*)^2) -\frac{1}{G_{u}^2}((t^*)^3+\frac{1}{4}\lambda _{u} (t^*)^4e^{\lambda _ut^*}) \geqslant 0.$$

Since \(G=\sqrt{3}|\lambda _u| e_0/C_u\):

$$e_0^2(t^*+\frac{1}{2}\lambda _{u} (t^*)^2) +\frac{C_u^2}{\lambda _u^2}(-\frac{1}{3}(t^*)^3-\frac{1}{12}\lambda _{u} (t^*)^4e^{\lambda _ut^*}) \geqslant 0.$$

By multiplying by \(\lambda _u\):

$$e_0^2(\lambda _ut^*+\frac{1}{2}\lambda _{u}^2 (t^*)^2) +\frac{C_u^2}{\lambda _u^2}(-\frac{1}{3}\lambda _u(t^*)^3-\frac{1}{12}\lambda _{u}^2 (t^*)^4e^{\lambda _ut^*}) \leqslant 0.$$

Note that, in the above formula, the subexpression \(\lambda _ut^*+\frac{1}{2}\lambda _{u}^2 (t^*)^2\) is such that:

$$\lambda _ut^*+\frac{1}{2}\lambda _{u}^2 (t^*)^2\geqslant e^{\lambda _u t^*}-1$$

since \(e^{\lambda _u t^*}-1=\lambda _ut^*+\frac{1}{2}\lambda _{u}^2 (t^*)^2e^{\lambda \theta }\leqslant \lambda _ut^*+\frac{1}{2}\lambda _{u}^2 (t^*)^2\).

On the other hand, the subexpression \(-\frac{1}{3}\lambda _u(t^*)^3-\frac{1}{12}\lambda _{u}^2 (t^*)^4e^{\lambda _ut^*}\) is such that:

$$-\frac{1}{3}\lambda _u(t^*)^3-\frac{1}{12}\lambda _{u}^2 (t^*)^4e^{\lambda _ut^*}\geqslant \frac{2 t^*}{\lambda _{u}}+(t^*)^2+\frac{2}{\lambda _{u}^2}(1-e^{\lambda _{u} t^*})$$

since

\(\frac{2 t^*}{\lambda _{u}}+(t^*)^2+\frac{2}{\lambda _{u}^2}(1-e^{\lambda _{u} t^*})\)

\(=\frac{2 t^*}{\lambda _{u}}+(t^*)^2+\frac{2}{\lambda _{u}^2}(-\lambda _u t^*-\frac{1}{2}\lambda _u^2 (t^*)^2-\frac{1}{6}\lambda _u^3(t^*)^3-\frac{1}{24}\lambda _u^4(t^*)^4 e^{\lambda _u\theta }\)

\(=\frac{2}{\lambda _u^2}(-\frac{1}{6}\lambda _u^3(t^*)^3-\frac{1}{24}\lambda _u^4(t^*)^4 e^{\lambda _u\theta })\) for some \(0\leqslant \theta \leqslant t^*\)

\(=-\frac{1}{3}\lambda _u(t^*)^3-\frac{1}{12}\lambda _u^2(t^*)^4 e^{\lambda _u\theta }\)

\(\leqslant -\frac{1}{3}\lambda _u(t^*)^3-\frac{1}{12}\lambda _u^2(t^*)^4e^{\lambda _ut^*}.\)

It follows:

$$e_0^2(e^{\lambda _{u} t^*}-1)+\frac{C_{u}^2}{\lambda _{u}^2}(\frac{2 t^*}{\lambda _{u}}+(t^*)^2+\frac{2}{\lambda _{u}^2}(1-e^{\lambda _{u} t^*}))\leqslant 0.$$
$$e_0^2e^{\lambda _{u} t^*}+\frac{C_{u}^2}{\lambda _{u}^2}(\frac{2 t^*}{\lambda _{u}}+(t^*)^2+\frac{2}{\lambda _{u}^2}(1-e^{\lambda _{u} t^*}))\leqslant e_0^2.$$

i.e.

$$(\delta _{e_0}^u(t^*))^2\leqslant e_0^2.$$

Hence: \(\delta _{e_0}^u(t^*)\leqslant e_0.\) It remains to show: \(\delta _{e_0}^u(t)\leqslant e_0\) for \(t\in [0,t^*]\).

Consider the 1rst and 2nd derivative \(\delta '(\cdot )\) and \(\delta ''(\cdot )\) of \(\delta (\cdot )\). We have:

\(\delta '(t)=\lambda _{u}e_0^2e^{\lambda _{u}t}+\frac{C_{u}^2}{\lambda _{u}^2}(2t+\frac{2}{\lambda _{u}}-\frac{2}{\lambda _{u}}e^{\lambda _{u}t})\)

\(\delta ''(t)=\lambda _{u}^2e_0^2e^{\lambda _{u}t}+\frac{C_{u}^2}{\lambda _{u}^2}(2-2e^{\lambda _{u}t}).\)

Hence \(\delta ''(t)>0\) for all \(t\geqslant 0\). On the other hand, for \(t=0\), \(\delta '(t)=\lambda _u e_0^2<0\), and for t sufficiently large, \(\delta '(t)>0\). Hence, \(\delta '(\cdot )\) is strictly increasing and has a unique root. It follows that the equation \(\delta (t)=e_0\) has a unique solution \(t^{**}\) for \(t>0\). Besides, \(\delta (t)\leqslant e_0\) for \(t\in [0,t^{**}]\), and \(\delta (t)\geqslant e_0\) for \(t\in [t^{**},+\infty )\). Since we have shown: \(\delta (t^*)\leqslant e_0\), it follows \(t^*\leqslant t^{**}\) and \(\delta (t)\leqslant e_0\) for \(t\in [0,t^{*}]\).    \(\Box \)

Appendix 2: Numerical Results

See Fig. 5.

Fig. 5.
figure 5

Simulation of the controllers for \(\sigma =1\).

Fig. 6.
figure 6

Simulation of the controllers for \(\sigma =0.5\).

Table 1. Value \(\Vert y_i^{\pi ^\varepsilon } (T) - y_i^f \Vert \) for \(\sigma =1\) and \(\sigma =0.5\) (\(T=2\), \(i=1,2\)).
Table 2. Projection value \(\Vert P {y}^{\pi ^\varepsilon }_2(T)-y_1^f\Vert \) for \(\sigma =1\), \(\sigma =0.5\) (\(T=2\)).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le Coënt, A., Fribourg, L. (2020). Guaranteed Optimal Reachability Control of Reaction-Diffusion Equations Using One-Sided Lipschitz Constants and Model Reduction. In: Chamberlain, R., Edin Grimheden, M., Taha, W. (eds) Cyber Physical Systems. Model-Based Design. CyPhy WESE 2019 2019. Lecture Notes in Computer Science(), vol 11971. Springer, Cham. https://doi.org/10.1007/978-3-030-41131-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41131-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41130-5

  • Online ISBN: 978-3-030-41131-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics