Skip to main content

Accurate Recognition of Spatial Patterns Arising in Spatio-Temporal Dynamics of Invasive Species

  • Chapter
  • First Online:
Current Trends in Dynamical Systems in Biology and Natural Sciences

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 21))

Abstract

Accurate identification of spatial patterns remains a challenging problem in many ecological applications. One example is a problem of biological invasion where distinguishing between patchy spatial density pattern and continuous front spatial density pattern is important for monitoring and control of the invasive species. In this paper we address the problem of pattern recognition in biological invasion in terms of a biologically meaningful mathematical model consisting of two coupled integro-difference equations. The model allows for generating topologically different spatial structures and we employ several topological characteristics of spatial pattern to investigate various spatial density distributions. It is argued that, among the other topological quantities, the number of objects in the visual image of a spatial distribution gives us the most reliable conclusion about spatial pattern when it is required to distinguish between continuous and discontinuous (patchy) spatial structures. Furthermore, sensitivity of the pattern classification above to the definition of a monitoring protocol is discussed in the paper. Two basic properties of the monitoring protocol (i.e. the threshold density value and the number of sampling locations) are investigated and it is demonstrated how their variation affects correct reconstruction of spatial density pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)

    Article  Google Scholar 

  2. Garnier, G., Roques, L., Hamel, F.: Success rate of a biological invasion in terms of the spatial distribution of the founding population. Bull. Math. Biol. 74, 453–473 (2012)

    Article  MathSciNet  Google Scholar 

  3. Harary, F., Harborth, H.: Extremal animals. J. Comb. Inf. Syst. Sci. 1, 1–8 (1976)

    MathSciNet  MATH  Google Scholar 

  4. Hargis, C.D., Bissonette, J.A., David, J.L.: The behavior of landscape metrics commonly used in the study of habitat fragmentation. Landsc. Ecol. 13, 167–186 (1998)

    Article  Google Scholar 

  5. Jankovic, M., Petrovskii, S.V.: Gypsy moth invasion in North America: a simulation study of the spatial pattern and the rate of spread. Ecol. Compl. 14, 132–144 (2013)

    Article  Google Scholar 

  6. Kolmogorov, A.N., Petrovskiy, I.G., Piskunov, N.S.: A study of the diffusion equation with increase in the quantity of matter, and its application to a biological problem. Moscow Univ. Bull. Math. 1, 1–25 (1937)

    Google Scholar 

  7. Kot, M., Schaffer, W.M.: Discrete-time growth-dispersal models. Math. Biosci. 80, 109–136 (1986)

    Article  MathSciNet  Google Scholar 

  8. Lewis, M.A., Petrovskii, S.V., Potts, J.: The Mathematics Behind Biological Invasions, vol. 44. Springer, Berlin

    Google Scholar 

  9. Liebhold, A.M., Gurevitch, J.: Integrating the statistical analysis of spatial data in ecology. Ecography 25, 553–557 (2002)

    Article  Google Scholar 

  10. Mistro, D.C., Rodrigues, L.A.D., Petrovskii, S.V.: Spatiotemporal complexity of biological invasion in a space- and time-discrete predator–prey system with the strong Allee effect. Ecol. Compl. 9, 16–32 (2012)

    Article  Google Scholar 

  11. Morozov, A.Y., Petrovskii, S.V., Li, B.L.: Spatiotemporal complexity of patchy invasion in a predator–prey system with the Allee effect. J. Theor. Biol. 238, 18–35 (2006)

    Article  MathSciNet  Google Scholar 

  12. Petrovskaya, N.B., Embleton, N.L.: Evaluation of peak functions on ultra-coarse grids. Proc. R. Soc. A 469, 20120665 (2013). https://doi.org/10.1098/rspa.2012.0665

    Article  MathSciNet  Google Scholar 

  13. Petrovskaya, N.B., Embleton, N.L.: Computational methods for accurate evaluation of pest insect population size. In: Godoy, W.A.C., Ferreira, C.P. (eds.) Ecological Modelling Applied to Entomology, pp. 171–218. Springer, Berlin (2014)

    Google Scholar 

  14. Petrovskaya, N.B., Petrovskii, S.V.: The coarse-grid problem in ecological monitoring. Proc. R. Soc. A 466, 2933–2953 (2010)

    Article  MathSciNet  Google Scholar 

  15. Petrovskaya, N.B., Petrovskii, S.V., Murchie, A.K.: Challenges of ecological monitoring: estimating population abundance from sparse trap counts. J. R. Soc. Interface 9, 420–435 (2012)

    Article  Google Scholar 

  16. Petrovskaya, N.B., Petrovskii, S.V., Zhang, W.: Patchy, not patchy, or how much patchy? Classification of spatial patterns appearing in a model of biological invasion. Math. Model. Nat. Phenom. 12, 208–225 (2017)

    MATH  Google Scholar 

  17. Petrovskii, S.V., Morozov, A.Y., Venturino, E.: Allee effect makes possible patchy invasion in a prey–predator system. Ecol. Lett. 5, 345–352 (2002)

    Article  Google Scholar 

  18. Petrovskii, S.V., Malchow, H., Hilker, F.M., Venturino, E.: Patterns of patchy spread in deterministic and stochastic models of biological invasion and biological control. Biol. Invasions 7, 771–793 (2005)

    Article  Google Scholar 

  19. Petrovskii, S.V., Petrovskaya, N.B., Bearup, D.: Multiscale approach to pest insect monitoring: random walks, pattern formation, synchronization, and networks. Phys. Life Rev. 11, 467–525 (2014)

    Article  Google Scholar 

  20. Rodrigues, L.A.D., Mistro, D.C., Petrovskii, S.V.: Pattern formation in a space- and time-discrete predator–prey system with a strong Allee effect. Theor. Ecol. 5, 341–362 (2012)

    Article  Google Scholar 

  21. Rodrigues, L.A.D., Mistro, D.C., Cara, E.R., Petrovskaya, N.B., Petrovskii, S.V.: Patchy invasion of stage-structured alien species with short-distance and long-distance dispersal. Bull. Math. Biol. 77, 1583–1619 (2015)

    Article  MathSciNet  Google Scholar 

  22. Rosenberg, M., Anderson, C.: Spatial pattern analysis. In: Gibson, D. (ed.) Oxford Bibliographies in Ecology. Oxford University Press, New York (2016)

    Google Scholar 

  23. Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Petrovskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petrovskaya, N., Zhang, W. (2020). Accurate Recognition of Spatial Patterns Arising in Spatio-Temporal Dynamics of Invasive Species. In: Aguiar, M., Braumann, C., Kooi, B., Pugliese, A., Stollenwerk, N., Venturino, E. (eds) Current Trends in Dynamical Systems in Biology and Natural Sciences. SEMA SIMAI Springer Series, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-41120-6_2

Download citation

Publish with us

Policies and ethics