Skip to main content

Orbital Angular Momentum Microwave Generated by Free Electron Beam

  • Conference paper
  • First Online:
Communications and Networking (ChinaCom 2019)

Abstract

Based on the theory of classical electrodynamics and quantum mechanics, we quantitatively deduce microwave carrying Orbital Angular Momentum (OAM) radiated from the moving free electron beams on different closed-curved trajectories. It shows that the non-relativistic free electrons can also transit quantized OAM to the microwave in addition to the relativistic cyclotron electrons in the magnetic field. This work indicates the effective way to construct the antennas to generate high OAM modes of the microwave by multi-electron radiation.

This work has been supported by National Natural Science Foundation of China with project number 61731011.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Introduction to Quantum Electrodynamics. Wiley, Hoboken (1989)

    Google Scholar 

  2. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1999)

    MATH  Google Scholar 

  3. Beth, R.A.: Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936)

    Article  Google Scholar 

  4. Zhang, C., Ma, L.: Millimetre wave with rotational orbital angular momentum. Sci. Rep. 6, 31921 (2016)

    Article  Google Scholar 

  5. Allen, L., Beijersbergen, M., Spreeuw, R., Woerdman, J.P.: Orbital angular momentum of light and transformation of Laguerre Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)

    Article  Google Scholar 

  6. Thidé, B., et al.: Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys. Rev. Lett. 99, 087701 (2007)

    Article  Google Scholar 

  7. Chen, R., Xu, H., Moretti, M., Li, J.: Beam steering for the misalignment in UCA-based oam communication systems. IEEE Wirel. Commun. Lett. 7(4), 582–585 (2018)

    Article  Google Scholar 

  8. Asner, D.M., et al.: Single-electron detection and spectroscopy via relativistic cyclotron radiation. Phys. Rev. Lett. 114, 162501 (2015)

    Article  Google Scholar 

  9. Sawant, A., Choe, M.S., Thumm, M., Choi, E.: Orbital angular momentum (OAM) of rotating modes driven by electrons in electron cyclotron masers. Sci. Rep. 7, 3372 (2017)

    Article  Google Scholar 

  10. Molina, T., Torres, J.P., Torner, L.: Twisted photons. Nat. Phys. 3, 305 (2007)

    Article  Google Scholar 

  11. Bronzan, J.B., Low, F.E.: Selection rule for bosons. Phys. Rev. Lett. 12, 522–523 (1964)

    Article  Google Scholar 

  12. Katoh, M., et al.: Angular momentum of twisted radiation from an electron in spiral motion. Phys. Rev. Lett. 118, 094801 (2017)

    Article  Google Scholar 

  13. Katoh, M., et al.: Helical phase structure of radiation from an electron in circular motion. Sci. Rep. 7, 6130 (2017)

    Article  Google Scholar 

  14. Goldsmith, A.: Wireless Communications. Cambridge Univ. Press, Cambridge (2005)

    Book  Google Scholar 

  15. Basar, E.: Orbital angular momentum with index modulation. IEEE Trans. Wirel. Commun. 17(3), 2029–2037 (2018)

    Article  Google Scholar 

  16. Zhang, C., Zhao, Y.: Orbital angular momentum nondegenerate index mapping for long distance transmission. IEEE Trans. Wirel. Commun. 18, 5027–5036 (2019)

    Article  Google Scholar 

  17. Wang, L., Ge, X., Zi, R., Wang, C.: Capacity analysis of orbital angular momentum wireless channels. IEEE Access 5, 23069–23077 (2017)

    Article  Google Scholar 

  18. Sun, B., Wang, G., Yang, W., Zheng, L.: Joint LDPC and physical layer network coding for two-way relay channels with different frequency offsets. In: 2015 10th International Conference on Communications and Networking in China (ChinaCom), pp. 692–696, August 2015

    Google Scholar 

  19. Elder, F.R., Gurewitsch, A.M., Langmuir, R.V., Pollock, H.C.: Radiation from electrons in a synchrotron. Phys. Rev. 71, 829–830 (1947)

    Article  Google Scholar 

  20. Boyer, T.H.: Diamagnetism of a free particle in classical electron theory with classical electromagnetic zero-point radiation. Phys. Rev. A 21, 66–72 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, P., Zhang, C. (2020). Orbital Angular Momentum Microwave Generated by Free Electron Beam. In: Gao, H., Feng, Z., Yu, J., Wu, J. (eds) Communications and Networking. ChinaCom 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 312. Springer, Cham. https://doi.org/10.1007/978-3-030-41114-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41114-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41113-8

  • Online ISBN: 978-3-030-41114-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics