Skip to main content

Identification of Heat Conductivity in (2+1)D Equation as a Function of Time

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11958))

Abstract

The considered problem for identifying the time–dependent heat conductivity coefficient from over–posed boundary data belongs to a class of inverse problems. The proposed solution uses a variational approach for identifying the coefficient. The inverse problem is reformulated as a higher–order elliptic boundary–value problem for minimization of a quadratic functional of the original equation. The resulting system consists of a well–posed fourth–order boundary-value problem for the temperature and an explicit equation for the unknown heat conductivity coefficient. The obtained boundary–value problem is solved by means of an iterative procedure, which is thoroughly validated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kakac, S., Yener, Y., Naveira-Cotta, C.P.: Heat Conduction, 5th edn. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  2. Christov, C.I., Marinov, T.T.: Identification of heat-conduction coefficient via method of variational imbedding. Math. Comput. Model. 27(3), 109–116 (1998). https://doi.org/10.1016/S0895-7177(97)00269-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Hadała, B., Malinowski, Z., Szajding, A.: Solution strategy for the inverse determination of the specially varying heat transfer coefficient. Int. J. Heat Mass Transf. 104, 993–1007 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.093

    Article  Google Scholar 

  4. Hadamard, J.: Le Probleme de Cauchy et les Equations aux Derivatives Partielles Lineares Hyperboliques. Hermann, Paris (1932). https://doi.org/10.1090/S0002-9904-1934-05815-4

  5. Kügler, P.: Identification of a temperature dependent heat conductivity from single boundary measurements. SIAM J. Numer. Anal. 41(4), 1543–1563 (2004). https://doi.org/10.1137/S0036142902415900

    Article  MathSciNet  MATH  Google Scholar 

  6. Lesnic, D., Elliott, L., Ingham, D.B.: Identification of the thermal conductivity and heat capacity in unsteady nonlinear heat conduction problems using the boundary element method. J. Comput. Phys. 126, 410–420 (1996). https://doi.org/10.1006/jcph.1996.0146

    Article  MATH  Google Scholar 

  7. Malinowski, Z., Cebo-Rudnicka, A., Hadała, B., Szajding, A.: Inverse method implementation to heat transfer coefficient determination over the plate cooled by water spray. Inverse Prob. Sci. Eng. 23(3), 518–556 (2014). https://doi.org/10.1080/17415977.2014.923417

    Article  Google Scholar 

  8. Nedin, R., Nesterov, S., Vatulyan, A.: Identification of thermal conductivity coefficient and volumetric heat capacity of functionally graded materials. Int. J. Heat Mass Transf. 102, 213–218 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.027

    Article  Google Scholar 

  9. Marinov, T.T., Christov, C.I., Marinova, R.S.: Novel numerical approach to solitary-wave solutions identification of Boussinesq and Korteweg-de Vries equations. Int. J. Bifurcat. Chaos 15(2), 557–565 (2005). https://doi.org/10.1142/S0218127405012211

    Article  MathSciNet  MATH  Google Scholar 

  10. Marinov, T.T., Marinova, R.S., Christov, C.I.: Coefficient identification in elliptic partial differential equation. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2005. LNCS, vol. 3743, pp. 372–379. Springer, Heidelberg (2006). https://doi.org/10.1007/11666806_42

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossitza S. Marinova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marinov, T.T., Marinova, R.S. (2020). Identification of Heat Conductivity in (2+1)D Equation as a Function of Time. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2019. Lecture Notes in Computer Science(), vol 11958. Springer, Cham. https://doi.org/10.1007/978-3-030-41032-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41032-2_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41031-5

  • Online ISBN: 978-3-030-41032-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics