Skip to main content

Assessing the Robustness of Recurrent Neural Networks to Enhance the Spectrum of Reverberated Speech

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2019)

Abstract

Implementing voice recognition systems and voice analysis in real-life contexts present important challenges, especially when signal recording/registering conditions are adverse. One of the conditions that produce signal degradation, which has also been studied in recent years is reverberation. Reverberation is produced by the sound wave reflections that travel through the microphone from multiple directions.

Several Deep Learning-based methods have been proposed to improve speech signals that have been degraded with reverberation and are proven to be effective. Recently, recurrent neural networks, especially those with short and long term memory (LSTM), have presented surprising results in those tasks.

In this work, a proposal to evaluate the robustness of these neural networks to learn different reverberation conditions without any previous information is presented. The results show the necessity to train fewer sets of LSTM networks to improve speech signals, since a single network can learn several conditions simultaneously, in contrast with the current method of training a network for every single condition or noise level.

The evaluation has been made based on quality measurements of the signal’s spectrum (distance and perceptual quality), in comparison with the reverberated version. Results help to affirm the fact that LSTM networks are able to enhance the signal in any of five conditions, where all of them were trained simultaneously, with equivalent results as if to train a network for every single condition of reverberation.

Supported by the University of Costa Rica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Hamid, O., Mohamed, A.R., Jiang, H., Penn, G.: Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4277–4280. IEEE (2012)

    Google Scholar 

  2. Bagchi, D., Mandel, M.I., Wang, Z., He, Y., Plummer, A., Fosler-Lussier, E.: Combining spectral feature mapping and multi-channel model-based source separation for noise-robust automatic speech recognition. In: 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 496–503. IEEE (2015)

    Google Scholar 

  3. Coto-Jiménez, M.: Robustness of LSTM neural networks for the enhancement of spectral parameters in noisy speech signals. In: Batyrshin, I., Martínez-Villaseñor, M.L., Ponce Espinosa, H.E. (eds.) MICAI 2018. LNCS (LNAI), vol. 11289, pp. 227–238. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04497-8_19

    Chapter  Google Scholar 

  4. Coto-Jiménez, M., Goddard-Close, J.: Lstm deep neural networks postfiltering for enhancing synthetic voices. Int. J. Pattern Recognit. Artif. Intell. 32(01), 1860008 (2018)

    Article  MathSciNet  Google Scholar 

  5. Coto-Jimenez, M., Goddard-Close, J., Di Persia, L., Rufiner, H.L.: Hybrid speech enhancement with wiener filters and deep LSTM denoising autoencoders. In: 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), pp. 1–8. IEEE (2018)

    Google Scholar 

  6. Coto-Jiménez, M., Goddard-Close, J., Martínez-Licona, F.: Improving automatic speech recognition containing additive noise using deep denoising autoencoders of LSTM networks. In: Ronzhin, A., Potapova, R., Németh, G. (eds.) SPECOM 2016. LNCS (LNAI), vol. 9811, pp. 354–361. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43958-7_42

    Chapter  Google Scholar 

  7. Deng, L., et al.: Recent advances in deep learning for speech research at microsoft. In: ICASSP, vol. 26, p. 64 (2013)

    Google Scholar 

  8. Du, J., Wang, Q., Gao, T., Xu, Y., Dai, L.R., Lee, C.H.: Robust speech recognition with speech enhanced deep neural networks. In: Fifteenth Annual Conference of the International Speech Communication Association (2014)

    Google Scholar 

  9. Erro, D., Sainz, I., Navas, E., Hernáez, I.: Improved HNM-based vocoder for statistical synthesizers. In: Twelfth Annual Conference of the International Speech Communication Association (2011)

    Google Scholar 

  10. Fan, Y., Qian, Y., Xie, F.L., Soong, F.K.: TTS synthesis with bidirectional LSTM based recurrent neural networks. In: Fifteenth Annual Conference of the International Speech Communication Association (2014)

    Google Scholar 

  11. Feng, X., Zhang, Y., Glass, J.: Speech feature denoising and dereverberation via deep autoencoders for noisy reverberant speech recognition. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1759–1763. IEEE (2014)

    Google Scholar 

  12. Gers, F.A., Schraudolph, N.N., Schmidhuber, J.: Learning precise timing with LSTM recurrent networks. J. Mach. Learn. Res. 3(Aug), 115–143 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Graves, A., Fernández, S., Schmidhuber, J.: Bidirectional LSTM networks for improved phoneme classification and recognition. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 799–804. Springer, Heidelberg (2005). https://doi.org/10.1007/11550907_126

    Chapter  Google Scholar 

  14. Graves, A., Jaitly, N., Mohamed, A.R.: Hybrid speech recognition with deep bidirectional LSTM. In: 2013 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 273–278. IEEE (2013)

    Google Scholar 

  15. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2017)

    Article  MathSciNet  Google Scholar 

  16. Han, K., He, Y., Bagchi, D., Fosler-Lussier, E., Wang, D.: Deep neural network based spectral feature mapping for robust speech recognition. In: Sixteenth Annual Conference of the International Speech Communication Association (2015)

    Google Scholar 

  17. Hansen, J.H., Pellom, B.L.: An effective quality evaluation protocol for speech enhancement algorithms. In: Fifth International Conference on Spoken Language Processing (1998)

    Google Scholar 

  18. Healy, E.W., Yoho, S.E., Wang, Y., Wang, D.: An algorithm to improve speech recognition in noise for hearing-impaired listeners. J. Acoust. Soc. Am. 134(4), 3029–3038 (2013)

    Article  Google Scholar 

  19. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Sig. Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  20. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  21. Huang, J., Kingsbury, B.: Audio-visual deep learning for noise robust speech recognition. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7596–7599. IEEE (2013)

    Google Scholar 

  22. Ishii, T., Komiyama, H., Shinozaki, T., Horiuchi, Y., Kuroiwa, S.: Reverberant speech recognition based on denoising autoencoder. In: Interspeech, pp. 3512–3516 (2013)

    Google Scholar 

  23. Kumar, A., Florencio, D.: Speech enhancement in multiple-noise conditions using deep neural networks. arXiv preprint arXiv:1605.02427 (2016)

  24. Lee, W.J., Wang, S.S., Chen, F., Lu, X., Chien, S.Y., Tsao, Y.: Speech dereverberation based on integrated deep and ensemble learning algorithm. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5454–5458. IEEE (2018)

    Google Scholar 

  25. Maas, A.L., Le, Q.V., O’Neil, T.M., Vinyals, O., Nguyen, P., Ng, A.Y.: Recurrent neural networks for noise reduction in robust ASR. In: Thirteenth Annual Conference of the International Speech Communication Association (2012)

    Google Scholar 

  26. Narayanan, A., Wang, D.: Ideal ratio mask estimation using deep neural networks for robust speech recognition. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7092–7096. IEEE (2013)

    Google Scholar 

  27. Naylor, P.A., Gaubitch, N.D.: Speech Dereverberation. Springer, London (2010). https://doi.org/10.1007/978-1-84996-056-4

    Book  MATH  Google Scholar 

  28. Rix, A.W., Hollier, M.P., Hekstra, A.P., Beerends, J.G.: Perceptual evaluation of speech quality (PESQ) the new itu standard for end-to-end speech quality assessment part i-time-delay compensation. J. Audio Eng. Soc. 50(10), 755–764 (2002)

    Google Scholar 

  29. Seltzer, M.L., Yu, D., Wang, Y.: An investigation of deep neural networks for noise robust speech recognition. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7398–7402. IEEE (2013)

    Google Scholar 

  30. Valentini-Botinhao, C.: Reverberant speech database for training speech dereverberation algorithms and TTS models (2016). https://doi.org/10.7488/ds/1425

  31. Vincent, E., Watanabe, S., Nugraha, A.A., Barker, J., Marxer, R.: An analysis of environment, microphone and data simulation mismatches in robust speech recognition. Comput. Speech Lang. 46, 535–557 (2017)

    Article  Google Scholar 

  32. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(Dec), 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Weninger, F., Geiger, J., Wöllmer, M., Schuller, B., Rigoll, G.: Feature enhancement by deep LSTM networks for asr in reverberant multisource environments. Comput. Speech Lang. 28(4), 888–902 (2014)

    Article  Google Scholar 

  34. Weninger, F., Watanabe, S., Tachioka, Y., Schuller, B.: Deep recurrent de-noising auto-encoder and blind de-reverberation for reverberated speech recognition. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4623–4627. IEEE (2014)

    Google Scholar 

  35. Xu, Y., Du, J., Dai, L.R., Lee, C.H.: An experimental study on speech enhancement based on deep neural networks. IEEE Signal Process. Lett. 21(1), 65–68 (2014)

    Article  Google Scholar 

  36. Zen, H., Sak, H.: Unidirectional long short-term memory recurrent neural network with recurrent output layer for low-latency speech synthesis. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4470–4474. IEEE (2015)

    Google Scholar 

  37. Zhao, Y., Wang, Z.Q., Wang, D.: Two-stage deep learning for noisy-reverberant speech enhancement. IEEE/ACM Trans. Audio Speech Lang. Process. 27(1), 53–62 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Costa Rica (UCR), Project No. 322-B9-105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin Coto-Jiménez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paniagua-Peñaranda, C., Zeledón-Córdoba, M., Coto-Jiménez, M. (2020). Assessing the Robustness of Recurrent Neural Networks to Enhance the Spectrum of Reverberated Speech. In: Crespo-Mariño, J., Meneses-Rojas, E. (eds) High Performance Computing. CARLA 2019. Communications in Computer and Information Science, vol 1087. Springer, Cham. https://doi.org/10.1007/978-3-030-41005-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41005-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41004-9

  • Online ISBN: 978-3-030-41005-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics