Skip to main content

An Update on the Molecular Pillars of Aging

  • Chapter
  • First Online:
Clinical Genetics and Genomics of Aging

Abstract

The human life span has been continually increasing as a result of favorable lifestyle factors, health care and medical advances and has consequences that include an increased incidence of age-associated diseases. The onset of osteoporosis, arthritis, cataracts, and cardiovascular and neurodegenerative diseases is strongly associated with the aging process, which is a multifactorial condition characterized by genome and proteome instability, mitochondrial dysfunction, metabolic deregulation, and cellular senescence. The remarkable impact of aging on the development of these progressive diseases highlights the need to understand the mechanisms that underlie the aging process and human longevity. In this chapter, we aim to summarize the main molecular and cellular processes that are involved in the regulation of aging and that may have implications for the development of therapeutic tools that decelerate senescence and improve human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

53BP1:

Tumor suppressor p53-binding protein 1

5mC:

5-Methylcytosine

AD:

Alzheimer’s disease

ADP:

Adenosine diphosphate

AICAR:

5-Aminoimidazole-4-carboxamide ribonucleotide

AKT:

Protein kinase B, also called PKB

AMP:

Adenosine monophosphate

AMPK:

AMP-activated protein kinase

ANT2:

Adenine nucleotide translocator 2

ARF:

ADP-ribosylation factor

ATP:

Adenosine triphosphate

BRASTO:

Brain-specific SIRT1-overexpressing transgenic mice

CDk:

Cyclin-dependent kinase

circRNA:

Circular RNA

CNV:

Copy number variant

COX:

Cyclooxygenase

CpG dinucleotide:

Cytosine nucleotide followed by a guanine nucleotide in the linear sequence of bases along its 5′ → 3′ direction

CR:

Calorie restriction

DDR:

DNA damage response

FOXO:

Forkhead box O

HLA-E:

Major histocompatibility complex class I antigen E

HP1:

Heterochromatin protein 1

IGF:

Insulin growth factor 1

IL:

Interleukin

LHON:

Leber hereditary optic neuropathy

LINE:

Long interspersed nuclear element

lncRNA:

Long noncoding RNA

MBD1:

Methyl-CpG-binding domain protein

MDC1:

Mediator of DNA damage checkpoint protein 1

MELAS:

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes

MFRTA:

Mitochondrial free radical theory of aging

miRNA:

MicroRNA

mtDNA:

Mitochondrial DNA

mTOR:

Mammalian target of rapamycin

mTORC:

Mammalian target of rapamycin complex

NAD+:

Nicotinamide adenine dinucleotide

NBS1:

Nibrin protein

NFƙB:

Nuclear factor ƙB

NR4A:

Nuclear receptor subfamily 4 group A member

NRF2:

Transcription factor named nuclear factor E2-related factor 2

PI3K:

Phosphatidylinositol 3-kinase

POT1:

Protection of telomeres 1 protein

ROS:

Reactive oxygen species

S6K:

Ribosome S6 kinase

SASP:

Senescence-associated secretory phenotype

SIRT:

Sirtuin

SNV:

Single-nucleotide variant

TERC:

Template telomerase RNA component

TFRC:

Transferrin receptor

TGF-β:

Transforming growth factor-β

TIN2:

TRF1-interaction nuclear factor 2

TOX:

Thymocyte selection-associated high mobility group box protein

TPE:

Telomere position effect

TPP1:

Tripeptidyl-peptidase 1

TRF1:

Telomeric repeat binding factor 1

UPS:

Ubiquitin-proteasome system

VEGF:

Vascular endothelial growth factor

References

  1. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Booth LN, Brunet A. The aging epigenome. Mol Cell. 2016;62:728–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vijg J, Suh Y. Genome instability and aging. Annu Rev Physiol. 2013;75:645–68.

    Article  CAS  PubMed  Google Scholar 

  4. Hoeijmakers JHJ. DNA damage, aging, and cancer. N Engl J Med. 2009;361:1475–85.

    Article  CAS  PubMed  Google Scholar 

  5. Veitia RA, Govindaraju DR, Bottani S, Birchler JA. Aging: somatic mutations, epigenetic drift and gene dosage imbalance. Trends Cell Biol. 2017;27:299–310.

    Article  CAS  PubMed  Google Scholar 

  6. Milholland B, Suh Y, Vijg J. Mutation and catastrophe in the aging genome. Exp Gerontol. 2017;94:34–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maslov AY, Ganapathi S, Westerhof M, Quispe-Tintaya W, White RR, Van Houten B, et al. DNA damage in normally and prematurely aged mice. Aging Cell. 2013;12:467–77.

    Article  CAS  PubMed  Google Scholar 

  8. Blokzijl F, de Ligt J, Jager M, Sasselli V, Roerink S, Sasaki N, et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature. 2016;538:260–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coolbaugh-Murphy MI, Xu J, Ramagli LS, Brown BW, Siciliano MJ. Microsatellite instability (MSI) increases with age in normal somatic cells. Mech Ageing Dev. 2005;126:1051–9.

    Article  CAS  PubMed  Google Scholar 

  10. Forsberg LA, Rasi C, Razzaghian HR, Pakalapati G, Waite L, Thilbeault KS, et al. Age-related somatic structural changes in the nuclear genome of human blood cells. Am J Hum Genet. 2012;90:217–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vijg J. Somatic mutations, genome mosaicism, cancer and aging. Curr Opin Genet Dev. 2014;26:141–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morris BJ, Willcox BJ, Donlon TA. Genetic and epigenetic regulation of human aging and longevity. Biochim Biophys Acta Mol basis Dis. 2019;1865(7):1718–44.

    Article  CAS  PubMed  Google Scholar 

  13. Sanese P, Forte G, Disciglio V, Grossi V, Simone C. FOXO3 on the road to longevity: lessons from SNPs and chromatin hubs. Comput Struct Biotechnol J. 2019;17:737–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fortney K, Dobriban E, Garagnani P, Pirazzini C, Monti D, Mari D, et al. Genome-wide scan informed by age-related disease identifies loci for exceptional human longevity. Li H, editor. PLoS Genet. 2015. https://doi.org/10.1371/journal.pgen.

  15. Polderman TJC, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM, et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 2015;47:702–9.

    Article  CAS  PubMed  Google Scholar 

  16. Cellerino A, Ori A. What have we learned on aging from omics studies? Semin Cell Dev Biol. 2017;70:177–89.

    Article  CAS  PubMed  Google Scholar 

  17. Maxwell PH. What might retrotransposons teach us about aging? Curr Genet. 2016;62:277–82.

    Article  CAS  PubMed  Google Scholar 

  18. De Cecco M, Criscione SW, Peterson AL, Neretti N, Sedivy JM, Kreiling JA. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging (Albany NY). 2013;5:867–83.

    Article  Google Scholar 

  19. Srivastava S. The mitochondrial basis of aging and age-related disorders. Genes (Basel). 2017;8(12) https://doi.org/10.3390/genes8120398.

  20. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet. 2006;38:518–20.

    Article  CAS  PubMed  Google Scholar 

  21. Bua E, Johnson J, Herbst A, Delong B, McKenzie D, Salamat S, et al. Mitochondrial DNA–deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet. 2006;79:469–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cortopassi GA, Arnheim N. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res. 1990;18:6927–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wanagat J, Cao Z, Pathare P, Aiken JM. Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. FASEB J. 2001;15:322–32.

    Article  CAS  PubMed  Google Scholar 

  24. Cottrell DA, Blakely EL, Johnson MA, Ince PG, Borthwick GM, Turnbull DM. Cytochrome c oxidase deficient cells accumulate in the hippocampus and choroid plexus with age. Neurobiol Aging. 2001;22:265–72.

    Article  CAS  PubMed  Google Scholar 

  25. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429:417–23.

    Article  CAS  PubMed  Google Scholar 

  26. Shay JW. Telomeres and aging. Curr Opin Cell Biol. 2018;52:1–7.

    Article  CAS  PubMed  Google Scholar 

  27. Victorelli S, Passos JF. Telomeres and cell senescence – size matters not. EBioMedicine. 2017;21:14–20.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ulaner GA, Hu JF, Vu TH, Giudice LC, Hoffman AR. Tissue-specific alternate splicing of human telomerase reverse transcriptase (hTERT) influences telomere lengths during human development. Int J Cancer. 2001;9:644–9.

    Article  Google Scholar 

  29. Jaskelioff M, Muller FL, Paik J-H, Thomas E, Jiang S, Adams AC, et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature. 2011;469:102–6.

    Article  CAS  PubMed  Google Scholar 

  30. Von Zglinicki T. Role of oxidative stress in telomere length regulation and replicative senescence. Ann N Y Acad Sci. 2006;908:99–110.

    Article  Google Scholar 

  31. von Zglinicki T, Pilger R, Sitte N. Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med. 2000;28:64–74.

    Article  Google Scholar 

  32. Serra V, von Zglinicki T, Lorenz M, Saretzki G. Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J Biol Chem. 2003;278:6824–30.

    Article  CAS  PubMed  Google Scholar 

  33. Guan J-Z, Guan W-P, Maeda T, Guoqing X, GuangZhi W, Makino N. Patients with multiple sclerosis show increased oxidative stress markers and somatic telomere length shortening. Mol Cell Biochem. 2015;400:183–7.

    Article  CAS  PubMed  Google Scholar 

  34. Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. De Lange T, editor. PLoS Biol. 2007. https://doi.org/10.1371/journal.pbio.0050110.

  35. Forero DA, González-Giraldo Y, López-Quintero C, Castro-Vega LJ, Barreto GE, Perry G. Meta-analysis of telomere length in Alzheimer’s disease. J Gerontol A Biol Sci Med Sci. 2016;71:1069–73.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Blasco MA. The epigenetic regulation of mammalian telomeres. Nat Rev Genet. 2007;8:299–309.

    Article  CAS  PubMed  Google Scholar 

  37. Lou Z, Wei J, Riethman H, Baur JA, Voglauer R, Shay JW, et al. Telomere length regulates ISG15 expression in human cells. Aging (Albany NY). 2009;1:608–21.

    Article  CAS  Google Scholar 

  38. Zampieri M, Ciccarone F, Calabrese R, Franceschi C, Bürkle A, Caiafa P. Reconfiguration of DNA methylation in aging. Mech Ageing Dev. 2015;151:60–70.

    Article  CAS  PubMed  Google Scholar 

  39. Benayoun BA, Pollina EA, Brunet A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol. 2015;16:593–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yuan T, Jiao Y, de Jong S, Ophoff RA, Beck S, Teschendorff AE. An integrative multi-scale analysis of the dynamic DNA methylation landscape in aging. Greally JM, editor. PLOS Genet. 2015. https://doi.org/10.1371/journal.pgen.1004996.

  42. Ni Z, Ebata A, Alipanahiramandi E, Lee SS. Two SET domain containing genes link epigenetic changes and aging in Caenorhabditis elegans. Aging Cell. 2012;11:315–25.

    Article  CAS  PubMed  Google Scholar 

  43. Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A. 2006;103:8703–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, et al. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science. 2015;348:1160–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shah PP, Donahue G, Otte GL, Capell BC, Nelson DM, Cao K, et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev. 2013;27:1787–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun D, Luo M, Jeong M, Rodriguez B, Xia Z, Hannah R, et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell. 2014;14:673–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Merkwirth C, Jovaisaite V, Durieux J, Matilainen O, Jordan SD, Quiros PM, et al. Two conserved histone demethylases regulate mitochondrial stress-induced longevity. Cell. 2016;165:1209–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pombo A, Dillon N. Three-dimensional genome architecture: players and mechanisms. Nat Rev Mol Cell Biol. 2015;16:245–57.

    Article  CAS  PubMed  Google Scholar 

  49. Oberdoerffer P, Sinclair DA. The role of nuclear architecture in genomic instability and ageing. Nat Rev Mol Cell Biol. 2007;8:692–702.

    Article  CAS  PubMed  Google Scholar 

  50. Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T, et al. Elevated histone expression promotes life span extension. Mol Cell. 2010;39:724–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu L, Cheung TH, Charville GW, Hurgo BMC, Leavitt T, Shih J, et al. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep. 2013;4:189–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Geng Y, Lin HT, Chen W, Liu ZC, Xiang W, Chen WR. Age-related reduction in calbindin-D28K expression in the Sprague-Dawley rat lens. Mol Med Rep. 2015;11:422–6.

    Article  CAS  PubMed  Google Scholar 

  53. García-Velázquez L, Arias C. The emerging role of Wnt signaling dysregulation in the understanding and modification of age-associated diseases. Ageing Res Rev. 2017;37:135–45.

    Article  PubMed  CAS  Google Scholar 

  54. de Magalhães JP, Curado J, Church GM. Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics. 2009;25:875–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Somel M, Guo S, Fu N, Yan Z, Hu HY, Xu Y, et al. MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res. 2010;20:1207–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Eijkelenboom A, Burgering BMT. FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol. 2013;14:83–97.

    Article  CAS  PubMed  Google Scholar 

  57. Salih DA, Brunet A. FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol. 2008;20:126–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Webb AE, Kundaje A, Brunet A. Characterization of the direct targets of FOXO transcription factors throughout evolution. Aging Cell. 2016;15:673–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K, et al. FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci. 2008;105:13987–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med. 2015;88:108–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rahman MM, Sykiotis GP, Nishimura M, Bodmer R, Bohmann D. Declining signal dependence of Nrf2-MafS-regulated gene expression correlates with aging phenotypes. Aging Cell. 2013;12:554–62.

    Article  CAS  PubMed  Google Scholar 

  62. Tullet JMA, Hertweck M, An JH, Baker J, Hwang JY, Liu S, et al. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell. 2008;132:1025–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gomez-Verjan JC, Vazquez-Martinez ER, Rivero-Segura NA, Medina-Campos RH. The RNA world of human ageing. Hum Genet. 2018;137:865–79.

    Article  CAS  PubMed  Google Scholar 

  64. Ripa R, Dolfi L, Terrigno M, Pandolfini L, Savino A, Arcucci V, et al. MicroRNA miR-29 controls a compensatory response to limit neuronal iron accumulation during adult life and aging. BMC Biol. 2017;15:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, et al. MicroRNA-34a regulates cardiac ageing and function. Nature. 2013;495:107–10.

    Article  CAS  PubMed  Google Scholar 

  66. Hadar A, Milanesi E, Walczak M, Puzianowska-Kuźnicka M, Kuźnicki J, Squassina A, et al. SIRT1, miR-132 and miR-212 link human longevity to Alzheimer’s disease. Sci Rep. 2018;8:8465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Monnier P, Martinet C, Pontis J, Stancheva I, Ait-Si-Ali S, Dandolo L. H19 lncRNA controls gene expression of the imprinted gene network by recruiting MBD1. Proc Natl Acad Sci U S A. 2013;110:20693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fu VX, Dobosy JR, Desotelle JA, Almassi N, Ewald JA, Srinivasan R, et al. Aging and cancer-related loss of insulin-like growth factor 2 imprinting in the mouse and human prostate. Cancer Res. 2008;68:6797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Panda AC, Abdelmohsen K, Gorospe M. SASP regulation by noncoding RNA. Mech Ageing Dev. 2017;168:37–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Prattichizzo F, Micolucci L, Cricca M, De Carolis S, Mensà E, Ceriello A, et al. Exosome-based immunomodulation during aging: a nano-perspective on inflamm-aging. Mech Ageing Dev. 2017;168:44–53.

    Article  CAS  PubMed  Google Scholar 

  71. Panda AC, Grammatikakis I, Kim KM, De S, Martindale JL, Munk R, et al. Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res. 2017;45:4021–35.

    Article  CAS  PubMed  Google Scholar 

  72. Ori A, Toyama BH, Harris MS, Bock T, Iskar M, Bork P, et al. Integrated transcriptome and proteome analyses reveal organ-specific proteome deterioration in old rats. Cell Syst. 2015;1:224–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wei Y-N, Hu H-Y, Xie G-C, Fu N, Ning Z-B, Zeng R, et al. Transcript and protein expression decoupling reveals RNA binding proteins and miRNAs as potential modulators of human aging. Genome Biol. 2015;16:41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Bellavista E, Martucci M, Vasuri F, Santoro A, Mishto M, Kloss A, et al. Lifelong maintenance of composition, function and cellular/subcellular distribution of proteasomes in human liver. Mech Ageing Dev. 2014;141–142:26–34.

    Article  PubMed  CAS  Google Scholar 

  75. Charmpilas N, Daskalaki I, Papandreou ME, Tavernarakis N. Protein synthesis as an integral quality control mechanism during ageing. Ageing Res Rev. 2015;23:75–89.

    Article  CAS  PubMed  Google Scholar 

  76. Steffen KK, Dillin A. A ribosomal perspective on proteostasis and aging. Cell Metab. 2016;23:1004–12.

    Article  CAS  PubMed  Google Scholar 

  77. Bettayeb K, Hooli BV, Parrado AR, Randolph L, Varotsis D, Aryal S, et al. Relevance of the COPI complex for Alzheimer’s disease progression in vivo. Proc Natl Acad Sci U S A. 2016;113:5418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li C, Shah SZA, Zhao D, Yang L. Role of the retromer complex in neurodegenerative diseases. Front Aging Neurosci. 2016;8:42.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. D’Angelo MA, Raices M, Panowski SH, Hetzer MW. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell. 2009;136:284–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Woerner AC, Frottin F, Hornburg D, Feng LR, Meissner F, Patra M, et al. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science. 2016;351:173–6.

    Article  CAS  PubMed  Google Scholar 

  81. Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev. 2011;10:205–15.

    Article  CAS  PubMed  Google Scholar 

  82. Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015;84:435–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging. Cell. 2011;146:682–95.

    Article  CAS  PubMed  Google Scholar 

  84. Tomaru U, Takahashi S, Ishizu A, Miyatake Y, Gohda A, Suzuki S, et al. Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities. Am J Pathol. 2012;180:963–72.

    Article  CAS  PubMed  Google Scholar 

  85. Rodriguez KA, Edrey YH, Osmulski P, Gaczynska M, Buffenstein R. Altered composition of liver proteasome assemblies contributes to enhanced proteasome activity in the exceptionally long-lived naked mole-rat. Brodsky JL, editor. PLoS One. 2012. https://doi.org/10.1371/journal.pone.0035890.

  86. Chondrogianni N, Georgila K, Kourtis N, Tavernarakis N, Gonos ES. Enhanced proteasome degradation extends Caenorhabditis elegans lifespan and alleviates aggregation-related pathologies. Free Radic Biol Med. 2014;75:S18. https://doi.org/10.1016/j.freeradbiomed.2014.10.632.

    Article  PubMed  Google Scholar 

  87. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460:392–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Janssens GE, Meinema AC, González J, Wolters JC, Schmidt A, Guryev V, et al. Protein biogenesis machinery is a driver of replicative aging in yeast. Elife 2015. https://doi.org/10.7554/eLife.08527.

  89. Min J-N, Whaley RA, Sharpless NE, Lockyer P, Portbury AL, Patterson C. CHIP deficiency decreases longevity, with accelerated aging phenotypes accompanied by altered protein quality control. Mol Cell Biol. 2008;28:4018–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mazucanti CH, Cabral-Costa JV, Vasconcelos AR, Andreotti DZ, Scavone C, Kawamoto EM. Longevity pathways (mTOR, SIRT, insulin/IGF-1) as key modulatory targets on aging and neurodegeneration. Curr Top Med Chem. 2015;15:2116–38.

    Article  CAS  PubMed  Google Scholar 

  91. Haigis MC, Yankner BA. The aging stress response. Mol Cell. 2010;40:333–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature. 2013 Jan 16;493:338–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lamming DW, Ye L, Astle CM, Baur JA, Sabatini DM, Harrison DE. Young and old genetically heterogeneous HET3 mice on a rapamycin diet are glucose intolerant but insulin sensitive. Aging Cell. 2013;12:712–8.

    Article  CAS  PubMed  Google Scholar 

  94. Chakrabarti P, English T, Shi J, Smas CM, Kandror KV. Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes. 2010;59:775–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Miller RA, Harrison DE, Astle CM, Fernandez E, Flurkey K, Han M, et al. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell. 2014;13:468–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 2012;335:1638–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tataranni T, Biondi G, Cariello M, Mangino M, Colucci G, Rutigliano M, et al. Rapamycin-induced hypophosphatemia and insulin resistance are associated with mTORC2 activation and klotho expression. Am J Transplant. 2011;11(8):1656–64.

    Article  CAS  PubMed  Google Scholar 

  98. Haigis MC, Sinclair DA. Mammalian Sirtuins: biological insights and disease relevance. Annu Rev Pathol Mech Dis. 2010;5:253–95.

    Article  CAS  Google Scholar 

  99. Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30:271–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lee S-H, Lee J-H, Lee H-Y, Min K-J. Sirtuin signaling in cellular senescence and aging. BMB Rep. 2019;52:24–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13(19):2570–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Verdin E, Hirschey MD, Finley LWS, Haigis MC. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci. 2010;35:669–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED, et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013;18:416–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dong Y, Liu N, Xiao Z, Sun T, Wu S, Sun W, et al. Renal protective effect of Sirtuin 1. J Diabetes Res. 2014;2014:1–8.

    Article  CAS  Google Scholar 

  105. Halaschek-Wiener J, Amirabbasi-Beik M, Monfared N, Pieczyk M, Sailer C, Kollar A, et al. Genetic variation in healthy oldest-old. Mary Bridger J, editor. PLoS One. 2009. https://doi.org/10.1371/journal.pone.0006641.

  106. Rose G, Dato S, Altomare K, Bellizzi D, Garasto S, Greco V, et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol. 2003;38:1065–70.

    Article  CAS  PubMed  Google Scholar 

  107. Brown K, Xie S, Qiu X, Mohrin M, Shin J, Liu Y, et al. SIRT3 reverses aging-associated degeneration. Cell Rep. 2013;3:319–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Beauharnois JM, Bolívar BE, Welch JT. Sirtuin 6: a review of biological effects and potential therapeutic properties. Mol BioSyst. 2013;9:1789.

    Article  CAS  PubMed  Google Scholar 

  109. Ghosh HS. The anti-aging, metabolism potential of SIRT1. Curr Opin Investig Drugs. 2008;9:1095–102.

    CAS  PubMed  Google Scholar 

  110. Lee S-H, Lee J-H, Lee H-Y, Min K-J. Sirtuin signaling in cellular senescence and aging. BMB Rep. 2019;52:24–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Haigis MC, Yankner BA. The aging stress response. Mol Cell. 2010;40:333–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. López-Lluch G, Navas P. Calorie restriction as an intervention in ageing. J Physiol. 2016;594:2043–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Suh Y, Atzmon G, Cho M-O, Hwang D, Liu B, Leahy DJ, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci. 2008;105:3438–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pawlikowska L, Hu D, Huntsman S, Sung A, Chu C, Chen J, et al. Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell. 2009;8:460–72.

    Article  CAS  PubMed  Google Scholar 

  115. Kenyon CJ. The genetics of ageing. Nature. 2010;464:504–12.

    Article  CAS  PubMed  Google Scholar 

  116. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1:15–25.

    Article  CAS  PubMed  Google Scholar 

  117. Osler ME, Zierath JR. Minireview: adenosine 5′-monophosphate-activated protein kinase regulation of fatty acid oxidation in skeletal muscle. Endocrinology. 2008;149:935–41.

    Article  CAS  PubMed  Google Scholar 

  118. Qiang W, Weiqiang K, Qing Z, Pengju Z, Yi L. Aging impairs insulin-stimulated glucose uptake in rat skeletal muscle via suppressing AMPKalpha. Exp Mol Med. 2007;39:535–43.

    Article  CAS  PubMed  Google Scholar 

  119. Kjøbsted R, Treebak JT, Fentz J, Lantier L, Viollet B, Birk JB, et al. Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner. Diabetes. 2015;64:2042–55.

    Article  PubMed  CAS  Google Scholar 

  120. Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 2010;11:554–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Onken B, Driscoll M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. Hart AC, editor. PLoS One. 2010. https://doi.org/10.1371/journal.pone.0008758.

  122. Anisimov VN, Berstein LM, Popovich IG, Zabezhinski MA, Egormin PA, Piskunova TS, et al. If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging (Albany NY). 2011;3:148–57.

    Article  CAS  Google Scholar 

  123. Theurey P, Pizzo P. The aging mitochondria. Genes (Basel). 2018;9:22.

    Article  CAS  Google Scholar 

  124. Tauchi H, Sato T. Age changes in size and number of mitochondria of human hepatic cells. J Gerontol. 1968;23:454–61.

    Article  CAS  PubMed  Google Scholar 

  125. Herbener GH. A morphometric study of age-dependent changes in mitochondrial population of mouse liver and heart. J Gerontol. 1976;31:8–12.

    Article  CAS  PubMed  Google Scholar 

  126. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci. 2005;102:5618–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Preston CC, Oberlin AS, Holmuhamedov EL, Gupta A, Sagar S, Syed RHK, et al. Aging-induced alterations in gene transcripts and functional activity of mitochondrial oxidative phosphorylation complexes in the heart. Mech Ageing Dev. 2008;129:304–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hunt ND, Hyun D-H, Allard JS, Minor RK, Mattson MP, Ingram DK, et al. Bioenergetics of aging and calorie restriction. Ageing Res Rev. 2006;5:125–43.

    Article  CAS  PubMed  Google Scholar 

  129. Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004;18:357–68.

    Article  CAS  PubMed  Google Scholar 

  130. Lee C-K, Allison DB, Brand J, Weindruch R, Prolla TA. Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts. Proc Natl Acad Sci. 2002;99:14988–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. López-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci. 2006;103:1768–73.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  132. Campisi J, Warner HR. Aging in mitotic and post-mitotic cells. Adv Cell Aging Gerontol. 2001;4:1–16.

    Article  CAS  Google Scholar 

  133. Raina AK, Zhu X, Smith MA. Alzheimer’s disease and the cell cycle. Acta Neurobiol Exp (Wars). 2004;64:107–12.

    Google Scholar 

  134. Yang Y, Mufson EJ, Herrup K. Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease. J Neurosci. 2003;23:2557–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Taylor RC, Dillin A. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell. 2013;153:1435–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Armanios M. Telomeres and age-related disease: how telomere biology informs clinical paradigms. J Clin Invest. 2013;123:996–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Maiese K. Erythropoietin and mTOR: a “One-Two Punch”; for aging-related disorders accompanied by enhanced life expectancy. Curr Neurovasc Res. 2016;13:329–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Galluzzi L, Kepp O, Kroemer G. TP53 and MTOR crosstalk to regulate cellular senescence. Aging (Albany NY). 2010;2:535–7.

    Article  CAS  Google Scholar 

  139. Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15:482–96.

    Article  PubMed  CAS  Google Scholar 

  140. Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence. Nat Rev Cancer. 2015;15:397–408.

    Article  CAS  PubMed  Google Scholar 

  141. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev. 2010;24:2463–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, et al. Ink4a/Arf expression is a biomarker of aging. J Clin Invest. 2004;114:1299–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Diekman BO, Sessions GA, Collins JA, Knecht AK, Strum SL, Mitin NK, et al. Expression of p16 INK 4a is a biomarker of chondrocyte aging but does not cause osteoarthritis. Aging Cell. 2018. https://doi.org/10.1111/acel.12771.

  144. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479:232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yamakoshi K, Takahashi A, Hirota F, Nakayama R, Ishimaru N, Kubo Y, et al. Real-time in vivo imaging of p16Ink4a reveals cross talk with p53. J Cell Biol. 2009;186:393–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kuilman T, Michaloglou C, Vredeveld LCW, Douma S, van Doorn R, Desmet CJ, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133:1019–31.

    Article  CAS  PubMed  Google Scholar 

  147. Coppé J-P, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. Downward J, editor. PLoS Biol. 2008;6:2853–68.

    Article  PubMed  CAS  Google Scholar 

  148. Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J. Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci U S A. 2009;106:17031–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Su Y, Xu C, Sun Z, Liang Y, Li G, Tong T, et al. S100A13 promotes senescence-associated secretory phenotype and cellular senescence via modulation of non-classical secretion of IL-1α. Aging (Albany NY). 2019;11:549–72.

    Article  CAS  Google Scholar 

  150. Laberge R-M, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015;17:1049–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pereira BI, Devine OP, Vukmanovic-Stejic M, Chambers ES, Subramanian P, Patel N, et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nat Commun. 2019;10:2387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Ruzankina Y, Brown EJ. Relationships between stem cell exhaustion, tumour suppression and ageing. Br J Cancer. 2007;97:1189–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Seo H, Chen J, González-Avalos E, Samaniego-Castruita D, Das A, Wang YH, et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc Natl Acad Sci U S A. 2019;116:12410–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rizzino A. Concise review: the Sox2-Oct4 connection: critical players in a much larger interdependent network integrated at multiple levels. Stem Cells. 2013;31:1033–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Vilas JM, Carneiro C, Da Silva-Álvarez S, Ferreirós A, González P, Gómez M, et al. Adult Sox2+ stem cell exhaustion in mice results in cellular senescence and premature aging. Aging Cell. 2018. https://doi.org/10.1111/acel.12834.

  156. Carrasco-Garcia E, Moreno-Cugnon L, Garcia I, Borras C, Revuelta M, Izeta A, et al. SOX2 expression diminishes with ageing in several tissues in mice and humans. Mech Ageing Dev. 2019;177:30–6.

    Article  CAS  PubMed  Google Scholar 

  157. Kovacs T, Csongei V, Feller D, Ernszt D, Smuk G, Sarosi V, et al. Alteration in the Wnt microenvironment directly regulates molecular events leading to pulmonary senescence. Aging Cell. 2014;13:838–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Our apologies to the authors whose work we could not cite due to space constraints.

This work was supported by CONACYT, A1-S-9559.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizbeth García-Velázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Velázquez, L., Arias, C. (2020). An Update on the Molecular Pillars of Aging. In: Gomez-Verjan, J., Rivero-Segura, N. (eds) Clinical Genetics and Genomics of Aging. Springer, Cham. https://doi.org/10.1007/978-3-030-40955-5_1

Download citation

Publish with us

Policies and ethics