Skip to main content

Collective Decision-Making on Triadic Graphs

  • Conference paper
  • First Online:
Complex Networks XI

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

Many real-world networks exhibit community structures and non-trivial clustering associated with the occurrence of a considerable number of triangular subgraphs known as triadic motifs. Triads are a set of distinct triangles that do not share an edge with any other triangle in the network. Network motifs are subgraphs that occur significantly more often compared to random topologies. Two prominent examples, the feedforward loop and the feedback loop, occur in various real-world networks such as gene-regulatory networks, food webs or neuronal networks. However, as triangular connections are also prevalent in communication topologies of complex collective systems, it is worthwhile investigating the influence of triadic motifs on the collective decision-making dynamics. To this end, we generate networks called Triadic Graphs (TGs) exclusively from distinct triadic motifs. We then apply TGs as underlying topologies of systems with collective dynamics inspired from locust marching bands. We demonstrate that the motif type constituting the networks can have a paramount influence on group decision-making that cannot be explained solely in terms of the degree distribution. We find that, in contrast to the feedback loop, when the feedforward loop is the dominant subgraph, the resulting network is hierarchical and inhibits coherent behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.weizmann.ac.il/mcb/urialon/.

References

  1. Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8(6), 450–461 (2007)

    Article  Google Scholar 

  2. Ariel, G., Ayali, A.: Locust collective motion and its modeling. PLoS Comput. Biol. 11(12), e1004522 (2015)

    Article  ADS  Google Scholar 

  3. Buhl, J., Sumpter, D.J., Couzin, I.D., Hale, J.J., Despland, E., Miller, E.R., Simpson, S.J.: From disorder to order in marching locusts. Science 312(5778), 1402–1406 (2006)

    Article  ADS  Google Scholar 

  4. Chen, L., Huepe, C., Gross, T.: Adaptive network models of collective decision making in swarming systems. Phys. Rev. E 94(2), 022415 (2016)

    Article  ADS  Google Scholar 

  5. Colaiori, F., Castellano, C.: Consensus versus persistence of disagreement in opinion formation: the role of zealots. J. Stat. Mech.: Theory E 2016(3), 033401 (2016)

    Article  MathSciNet  Google Scholar 

  6. Czirók, A., Barabási, A.L., Vicsek, T.: Collective motion of self-propelled particles: Kinetic phase transition in one dimension. Phys. Rev. Lett. 82, 209–212 (1999)

    Article  ADS  Google Scholar 

  7. Domínguez-García, V., Pigolotti, S., Muñoz, M.A.: Inherent directionality explains the lack of feedback loops in empirical networks. Sci. Rep. 4, 7497 (2014)

    Article  ADS  Google Scholar 

  8. Huepe, C., Zschaler, G., Do, A.L., Gross, T.: Adaptive-network models of swarm dynamics. New J. Phys. 13(7), 073022 (2011)

    Article  ADS  Google Scholar 

  9. Khaluf, Y., Hamann, H.: Modulating interaction times in an artificial society of robots. In: The 2018 Conference on Artificial Life (ALIFE), pp. 372–379. MIT Press (2019)

    Google Scholar 

  10. Khaluf, Y., Pinciroli, C., Valentini, G., Hamann, H.: The impact of agent density on scalability in collective systems: noise-induced versus majority-based bistability. Swarm Intell. 11(2), 155–179 (2017)

    Article  Google Scholar 

  11. Khaluf, Y., Rausch, I., Simoens, P.: The impact of interaction models on the coherence of collective decision-making: a case study with simulated locusts. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) Swarm Intelligence: 11th International conference, ANTS 2018. LNCS, vol. 11172, pp. 252–263. Springer, Cham (2018)

    Chapter  Google Scholar 

  12. Kirkman, T.P.: On a problem in combinations. Camb. Dublin Math. J 2(191–204), 1847 (1847)

    Google Scholar 

  13. Klaise, J., Johnson, S.: The origin of motif families in food webs. Sci. Rep. 7(1), 16197 (2017)

    Article  ADS  Google Scholar 

  14. Mateo, D., Horsevad, N., Hassani, V., Chamanbaz, M., Bouffanais, R.: Optimal network topology for responsive collective behavior. Sci. Adv. 5(4), eaau0999 (2019)

    Article  ADS  Google Scholar 

  15. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  ADS  Google Scholar 

  16. Rausch, I., Reina, A., Simoens, P., Khaluf, Y.: Coherent collective behaviour emerging from decentralised balancing of social feedback and noise. Swarm Intell. 13(3), 321–345 (2019)

    Article  Google Scholar 

  17. Shang, Y., Bouffanais, R.: Influence of the number of topologically interacting neighbors on swarm dynamics. Sci. Rep. 4, 4184 (2014)

    Article  ADS  Google Scholar 

  18. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  19. Winkler, M., Reichardt, J.: Node-specific triad pattern mining for complex-network analysis. In: 2014 IEEE International Conference on Data Mining Workshop, pp. 605–612. IEEE Press, New York (2014)

    Google Scholar 

  20. Winkler, M., Reichardt, J.: Motifs in triadic random graphs based on steiner triple systems. Phys. Rev. E 88, 022805 (2013)

    Article  ADS  Google Scholar 

  21. Yao, Y., Carretero-Paulet, L., Van de Peer, Y.: Using digital organisms to study the evolutionary consequences of whole genome duplication and polyploidy. PLOS One 14(7), 1–21 (2019)

    Google Scholar 

  22. Yates, C.A., Erban, R., Escudero, C., Couzin, I.D., Buhl, J., Kevrekidis, I.G., Maini, P.K., Sumpter, D.J.T.: Inherent noise can facilitate coherence in collective swarm motion. P. Natl. Acad. Sci. 106(14), 5464–5469 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilja Rausch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rausch, I., Khaluf, Y., Simoens, P. (2020). Collective Decision-Making on Triadic Graphs. In: Barbosa, H., Gomez-Gardenes, J., Gonçalves, B., Mangioni, G., Menezes, R., Oliveira, M. (eds) Complex Networks XI. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-40943-2_11

Download citation

Publish with us

Policies and ethics