Skip to main content

Abstract

This chapter introduces the fundamentals of wireless power transfer used for implant powering. An overview of several possible methods for the power source is exhibited, and the hybrid choice of remote powering and a rechargeable battery is justified. The choice of magnetic coupling as a power transfer method is explained. Moreover, the 4-coil inductive link and the required integrated circuits to create a stable power supply for remote powering are presented. In addition to the power receiving circuits, supplementary blocks are introduced to increase the power transfer efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEEE (2006) IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE Std C951-2005 (revision of IEEE Std C951-1991). IEEE, New York, pp 1–238

    Google Scholar 

  2. Yilmaz G (2014) Wireless power transfer and data communication for intracranial neural implants case study. École Polytechnique Fédérale de Lausanne (EPFL), Lausanne

    Google Scholar 

  3. Antonioli G, Baggioni F, Consiglio F et al (1973) Stinulatore cardiaco impiantabile con nuova battaria a stato solido al litio. Minerva Med 64:2298–2305

    Google Scholar 

  4. Mond HG, Proclemer A (2011) The 11th World survey of cardiac pacing and implantable Cardioverter-Defibrillators: calendar year 2009–a world society of arrhythmia’s project. Pacing Clin Electrophysiol 34:1013–1027

    Article  Google Scholar 

  5. Roundy S, Wright PK, Rabaey JM (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Springer, Berlin

    Book  Google Scholar 

  6. Kwon D, Rincon-Mora GA (2010) A 2-µm BiCMOS rectifier-free AC–DC piezoelectric energy harvester-charger IC. IEEE Trans Biomed Circuits Syst 4:400–409

    Article  Google Scholar 

  7. Zhang Y, Zhang F, Shakhsheer Y et al (2013) A batteryless 19 µW MICS/ISM-band energy harvesting body sensor node SoC for ExG applications. IEEE J. Solid State Circuits 48:199–213

    Article  Google Scholar 

  8. Ayazian S, Hassibi A (2011) Delivering optical power to subcutaneous implanted devices. In: 2011 Annual international conference of the IEEE engineering in medicine and biology society, pp 2874–2877

    Google Scholar 

  9. Goto K, Nakagawa T, Nakamura O, Kawata S (2001) An implantable power supply with an optically rechargeable lithium battery. IEEE Trans Biomed Eng 48:830–833

    Article  Google Scholar 

  10. Chow EY, Yang C, Ouyang Y et al (2011) Wireless powering and the study of RF propagation through ocular tissue for development of implantable sensors. IEEE Trans Antennas Propag 59:2379–2387

    Article  Google Scholar 

  11. Ho JS, Kim S, Poon ASY (2013) Midfield wireless powering for implantable systems. Proc IEEE 101:1369–1378

    Article  Google Scholar 

  12. Yilmaz G, Atasoy O, Dehollain C (2013) Wireless energy and data transfer for in-vivo epileptic focus localization. IEEE Sensors J 13:4172–4179

    Article  Google Scholar 

  13. Sauer C, Stanacevic M, Cauwenberghs G, Thakor N (2005) Power harvesting and telemetry in CMOS for implanted devices. IEEE Trans Circuits Syst Regul Pap 52:2605–2613

    Article  Google Scholar 

  14. Catrysse M, Hermans B, Puers R (2004) An inductive power system with integrated bi-directional data-transmission. Sens Actuators, A 115:221–229

    Article  Google Scholar 

  15. Mazzilli F, Thoppay PE, Praplan V, Dehollain C (2012) Ultrasound energy harvesting system for deep implanted-medical-devices (IMDs). In: 2012 IEEE international symposium on circuits and systems, pp 2865–2868

    Google Scholar 

  16. Mathieson K, Loudin J, Goetz G, et al (2012) Photovoltaic retinal prosthesis with high pixel density. Nat Photonics 6:391–397

    Article  Google Scholar 

  17. Lee SB, Lee B, Kiani M et al (2016) An inductively-powered wireless neural recording system with a charge sampling analog front-end. IEEE Sensors J 16:475–484

    Article  Google Scholar 

  18. US Food and Drug Administration (1997) Information for manufacturers seeking marketing clearance of diagnostic ultrasound systems and transducers. Center for Devices and Radiological Health, US Food and Drug Administration, Rockville

    Google Scholar 

  19. Baker MW, Sarpeshkar R (2007) Feedback analysis and design of RF power links for low-power bionic systems. IEEE Trans Biomed Circuits Syst 1:28–38

    Article  Google Scholar 

  20. Kurs A, Karalis A, Moffatt R et al (2007) Wireless power transfer via strongly coupled magnetic resonances. Science 317:83–86

    Article  MathSciNet  Google Scholar 

  21. RamRakhyani AK, Mirabbasi S, Chiao M (2011) Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans Biomed Circuits Syst 5:48–63

    Article  Google Scholar 

  22. Kiani M, Jow U, Ghovanloo M (2011) Design and optimization of a 3-coil inductive link for efficient wireless power transmission. IEEE Trans Biomed Circuits Syst 5:579–591

    Article  Google Scholar 

  23. Vaillancourt P, Djemouai A, Harvey JF, Sawan M (1997) EM radiation behavior upon biological tissues in a radio-frequency power transfer link for a cortical visual implant. In: Proceedings of the 19th annual international conference of the IEEE engineering in medicine and biology society. “Magnificent milestones and emerging opportunities in medical engineering” (Cat. No.97CH36136), vol 6, pp 2499–2502

    Google Scholar 

  24. Silay KM (2012) Remotely powered wireless cortical implants for brain-machine interfaces. École Polytechnique Fédérale de Lausanne (EPFL), Lausanne

    Google Scholar 

  25. Levacq D, Liber C, Dessard V, Flandre D (2004) Composite ULP diode fabrication, modelling and applications in multi-Vth FD SOI CMOS technology. Solid State Electron 48:1017–1025

    Article  Google Scholar 

  26. Chen C-L, Chen K-H, Liu S-I (2007) Efficiency-enhanced CMOS rectifier for wireless telemetry. Electron Lett 43:976–978

    Article  Google Scholar 

  27. Lee H, Ghovanloo M (2011) An integrated power-efficient active rectifier with offset-controlled high speed comparators for inductively powered applications. IEEE Trans Circuits Syst Regul Pap 58:1749–1760

    Article  MathSciNet  Google Scholar 

  28. Hashemi SS, Sawan M, Savaria Y (2012) A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices. IEEE Trans Biomed Circuits Syst 6:326–335

    Article  Google Scholar 

  29. Lu Y, Ki W (2014) A 13.56 MHz CMOS active rectifier with switched-offset and compensated biasing for biomedical wireless power transfer systems. IEEE Trans Biomed Circuits Syst 8:334–344

    Article  Google Scholar 

  30. Cha H, Park W, Je M (2012) A CMOS rectifier with a cross-coupled latched comparator for wireless power transfer in biomedical applications. IEEE Trans Circuits Syst Express Briefs 59:409–413

    Article  Google Scholar 

  31. Khan SR, Choi G (2017) High-efficiency CMOS rectifier with minimized leakage and threshold cancellation features for low power bio-implants. Microelectron J 66:67–75

    Article  Google Scholar 

  32. Steyaert MSJ, Sansen WMC (1990) Power supply rejection ratio in operational transconductance amplifiers. IEEE Trans Circuits Syst 37:1077–1084

    Article  Google Scholar 

  33. Gosselin P, Puddu R, Carreira A et al (2017) A CMOS automatic tuning system to maximize remote powering efficiency. In: 2017 IEEE international symposium on circuits and systems (ISCAS), pp 1–4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Türe, K., Dehollain, C., Maloberti, F. (2020). Powering of the Implanted Monitoring System. In: Wireless Power Transfer and Data Communication for Intracranial Neural Recording Applications . Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-40826-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40826-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40825-1

  • Online ISBN: 978-3-030-40826-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics