Skip to main content

Abstract

This chapter provides detailed information about the implantable intracranial monitoring system introduced in the previous chapter. The system overview and block diagram of the system will be presented. This chapter covers each functional block starting from the properties of the interested brain signals for presurgical analysis of epilepsy treatment to the receiver unit in the external base station. The detailed implementation of the blocks in the scope of this book is left for the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu JY, Sankar R, Lerner JT et al (2010) Removing interictal fast ripples on electrocorticography linked with seizure freedom in children. Neurology 75:1686

    Article  Google Scholar 

  2. Zijlmans M, Jiruska P, Zelmann R et al (2012) High-frequency oscillations as a new biomarker in epilepsy. Ann Neurol 71:169–178

    Article  Google Scholar 

  3. Kim S, Bhandari R, Klein M et al (2009) Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevices 11:453–466

    Article  Google Scholar 

  4. Viventi J, Kim D-H, Vigeland L et al (2011) Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 14:1599–1605

    Article  Google Scholar 

  5. Yeager JD, Phillips DJ, Rector DM, Bahr DF (2008) Characterization of flexible ECoG electrode arrays for chronic recording in awake rats. J Neurosci Methods 173:279–285

    Article  Google Scholar 

  6. Polikov VS, Tresco PA, Reichert WM (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148:1–18

    Article  Google Scholar 

  7. Mehrali M, Bagherifard S, Akbari M et al (2018) Blending electronics with the human body: a pathway toward a cybernetic future. Adv Sci (Weinh) 5(10)

    Google Scholar 

  8. Wattanapanitch W, Fee M, Sarpeshkar R (2007) An energy-efficient micropower neural recording amplifier. IEEE Trans Biomed Circuits Syst 1:136–147

    Article  Google Scholar 

  9. Yang Z, Zhao Q, Keefer E, Liu W (2009) Noise characterization, modeling, and reduction for in vivo neural recording. In: Bengio Y, Schuurmans D, Lafferty JD et al (eds) Advances in neural information processing systems, vol 22. Curran Associates Inc., New York, pp 2160–2168

    Google Scholar 

  10. Steyaert MSJ, Sansen WMC (1987) A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J Solid-State Circuits 22:1163–1168

    Article  Google Scholar 

  11. Muller R, Gambini S, Rabaey J (2012) A 0.013 mm2, 5 μW, DC-coupled neural signal acquisition IC with 0.5 V supply. IEEE J Solid-State Circuits 47(1):232–243

    Article  Google Scholar 

  12. Ruiz-Amaya J, Rodríguez-Pérez A, Delgado-Restituto M (2010) A comparative study of low-noise amplifiers for neural applications. In: 2010 International conference on microelectronics, pp 327–330

    Google Scholar 

  13. Nyquist H (1928) Certain topics in telegraph transmission theory. Trans Am Inst Electr Eng 47:617–644

    Article  Google Scholar 

  14. Gao H, Walker RM, Nuyujukian P et al (2012) HermesE: A 96-channel full data rate direct neural interface in 0.13 µm CMOS. IEEE J Solid-State Circuits 47:1043–1055

    Article  Google Scholar 

  15. Mollazadeh M, Murari K, Cauwenberghs G, Thakor N (2009) Micropower CMOS integrated low-noise amplification, filtering, and digitization of multimodal neuropotentials. IEEE Trans Biomed Circuits Syst 3:1–10

    Article  Google Scholar 

  16. Harrison RR, Watkins PT, Kier RJ et al (2007) A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J Solid-State Circuits 42:123–133

    Article  Google Scholar 

  17. Chen F, Chandrakasan AP, Stojanovic VM (2012) Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J Solid-State Circuits 47:744–756

    Article  Google Scholar 

  18. Shoaran M, Kamal MH, Pollo C et al (2014) Compact low-power cortical recording architecture for compressive multichannel data acquisition. IEEE Trans Biomed Circuits Syst 8:857–870

    Article  Google Scholar 

  19. Wang A, Lin F, Jin Z, Xu W (2016) Ultra-Low Power Dynamic Knob in Adaptive Compressed Sensing Towards Biosignal Dynamics. IEEE Transactions on Biomedical Circuits and Systems 10:579–592

    Article  Google Scholar 

  20. Ranjandish R, Schmid A (2018) A sub-µ/channel, 16-channel seizure detection and signal acquisition SoC based on multichannel compressive sensing. IEEE Trans Circuits Syst II: Express Briefs 65:1400–1404

    Article  Google Scholar 

  21. Aprile C, Ture K, Baldassarre L et al (2018) Adaptive learning-based compressive sampling for low-power wireless implants. IEEE Trans Circuits Syst I: Reg Pap 65:3929–3941

    Article  Google Scholar 

  22. Kwon D, Rincon-Mora GA (2010) A 2-µm BiCMOS rectifier-free AC–DC piezoelectric energy harvester-charger IC. IEEE Trans Biomed Circuits Syst 4:400–409

    Article  Google Scholar 

  23. Zhang Y, Zhang F, Shakhsheer Y et al (2013) A batteryless 19µW MICS/ISM-Band energy harvesting body sensor node SoC for ExG applications. IEEE J Solid-State Circuits 48:199–213

    Article  Google Scholar 

  24. Ayazian S, Hassibi A (2011) Delivering optical power to subcutaneous implanted devices. In: 2011 Annual international conference of the IEEE engineering in medicine and biology society, pp 2874–2877

    Google Scholar 

  25. Goto K, Nakagawa T, Nakamura O, Kawata S (2001) An implantable power supply with an optically rechargeable lithium battery. IEEE Trans Biomed Eng 48:830–833

    Article  Google Scholar 

  26. Mercier PP, Lysaght AC, Bandyopadhyay S et al (2012) Energy extraction from the biologic battery in the inner ear. Nat Biotechnol 30:1240–1243

    Article  Google Scholar 

  27. Miranda H, Gilja V, Chestek CA et al (2010) HermesD: a high-rate long-range wireless transmission system for simultaneous multichannel neural recording applications. IEEE Trans Biomed Circuits Syst 4:181–191

    Article  Google Scholar 

  28. Nikitin PV, Rao KVS, Lazar S (2007) An overview of near field UHF RFID. In: 2007 IEEE international conference on RFID, pp 167–174

    Google Scholar 

  29. Chow EY, Yang C, Ouyang Y et al (2011) Wireless powering and the study of RF propagation through ocular tissue for development of implantable sensors. IEEE Trans Antennas Propag 59:2379–2387

    Article  Google Scholar 

  30. Ho JS, Kim S, Poon ASY (2013) Midfield wireless powering for implantable systems. Proc IEEE 101:1369–1378

    Article  Google Scholar 

  31. Yilmaz G, Atasoy O, Dehollain C (2013) Wireless energy and data transfer for in-vivo epileptic focus localization. IEEE Sensors J 13:4172–4179

    Article  Google Scholar 

  32. Sauer C, Stanacevic M, Cauwenberghs G, Thakor N (2005) Power harvesting and telemetry in CMOS for implanted devices. IEEE Trans Circuits Syst I: Reg Pap 52:2605–2613

    Article  Google Scholar 

  33. Catrysse M, Hermans B, Puers R (2004) An inductive power system with integrated bi-directional data-transmission. Sens Actuators A: Phys 115:221–229

    Article  Google Scholar 

  34. Mazzilli F, Thoppay PE, Praplan V, Dehollain C (2012) Ultrasound energy harvesting system for deep implanted-medical-devices (IMDs). In: 2012 IEEE international symposium on circuits and systems, pp 2865–2868

    Google Scholar 

  35. Mathieson K, Loudin J, Goetz G et al (2012) Photovoltaic retinal prosthesis with high pixel density. Nat Photonics 6:391–397

    Article  Google Scholar 

  36. Kilinc EG, Dehollain C, Maloberti F (2015) Remote powering and data communication for implanted biomedical systems, 1st edn (2016 edition). Springer, New York

    Google Scholar 

  37. Lee S, Lee B, Kiani M et al. (2016) An inductively-powered wireless neural recording system with a charge sampling analog front-end. IEEE Sensors J 16:475–484

    Article  Google Scholar 

  38. Mandal S, Sarpeshkar R (2008) Power-efficient impedance-modulation wireless data links for biomedical implants. IEEE Trans Biomed Circuits Syst 2:301–315

    Article  Google Scholar 

  39. Rao KVS, Nikitin PV, Rao KVS, Nikitin PV (2006) Theory and measurement of backscattering from RFID tags. IEEE Antennas and Propag Mag 48:212–218

    Article  Google Scholar 

  40. Pandey J, Otis BP (2011) A Sub-100µW MICS/ISM band transmitter based on injection-locking and frequency multiplication. IEEE J Solid-State Circuits 46:1049–1058

    Article  Google Scholar 

  41. Medical Device Radiocommunications Service (MedRadio) (2011). In: Federal Communications Commission. https://www.fcc.gov/wireless/bureau-divisions/broadband-division/medical-device-radiocommunications-service-medradio. Accessed 12 Nov 2018

  42. First report and order regarding ultra-wideband transmission systems (2002). Federal Communications Commission

    Google Scholar 

  43. Vaillancourt P, Djemouai A, Harvey J, Sawan M (1997) EM radiation behavior upon biological tissues in a radio-frequency power transfer link for a cortical visual implant. In: Proceedings of the 19th annual international conference of the IEEE engineering in medicine and biology society ‘magnificent milestones and emerging opportunities in medical engineering’ (Cat No97CH36136)

    Google Scholar 

  44. Silay KM, Dehollain C, Declercq M (2008) Numerical analysis of temperature elevation in the head due to power dissipation in a cortical implant. In: 2008 30th annual international conference of the IEEE engineering in medicine and biology society, pp 951–956

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Türe, K., Dehollain, C., Maloberti, F. (2020). Implantable Monitoring System for Epilepsy. In: Wireless Power Transfer and Data Communication for Intracranial Neural Recording Applications . Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-40826-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40826-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40825-1

  • Online ISBN: 978-3-030-40826-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics