Skip to main content

History of Allelopathy

  • Chapter
  • First Online:
Allelopathy

Abstract

Molisch (1937) derived allelopathy from the two Greek words: allelon (which means ‘of each other’) and pathos (which means ‘to suffer’). Allelobiogenesis or allelopathy characterized by the combination of both biotic and abiotic stresses actuated by donor plants on recipient plants. As per the modern literature, the term allelopathy is an organic chemical interceded negative impedance between plants or microorganisms through its direct or indirect influence (De Albuquerque et al., 2011; Rice, 1984; Willis, 2000; Yang et al., 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Farid, I., El-Sayed, M., & Mohamed, E. (2013). Allelopathic Potential of Calotropis procera and Morettia philaeana. International Journal of Agriculture and Biology, 15(1), 130–134.

    Google Scholar 

  • Adams, A. A., Raman, A., & Nicol, H. I. (2010). Assessment of allelopathic effects of Phalaris aquatica on Chloris truncata, Trifolium subterraneum, Medicago trunculata, and P. aquatica. Journal of Applied Botany and Food Quality, 83(2), 163–169.

    CAS  Google Scholar 

  • Akemo, M. C., Regnier, E. E., & Bennett, M. A. (2000). Weed suppression in spring-sown rye (Secale cereale)–pea (Pisum sativum) cover crop mixes. Weed Technology, 14(3), 545–549.

    Article  Google Scholar 

  • Alagesaboopathi, C. (2014). Allelopathic effect of aqueous extract of Erythroxylum monogynum Roxb. on germination and growth of Solanum lycopersicm Mill. Var. PKM-1. International Journal of Science and Research, 3(8), 1091–1094.

    Google Scholar 

  • Al-Johani, N. S., Aytah, A. A., & Boutraa, T. (2012). Allelopathic impact of two weeds, Chenopodium murale and Malva parviflora on growth and photosynthesis of barley (Hordeum vulgare L.). Pakistan Journal of Botany, 44(6), 1865–1872.

    Google Scholar 

  • Amini, R., & Ghanepour, S. (2013). Growth and yield of different types of dry bean affected by smooth amaranth (Amaranthus hybridus L.) shoot extracts. International Journal of Agriculture and Crop Sciences, 5(2), 115–119.

    Google Scholar 

  • Amoghein, M. B., Amoghein, R. S., Tobeh, A., & Jamaati-e-Somarin, S. (2013). Allelopathic effects of extracts and plant residues of wild oat (Avena fatua) and rye (Secale cereale L.) on some germination parameters of wheat crop (Triticum aestivum) in the greenhouse condition. International Research Journal of Applied and Basic Sciences, 4(8), 2313–2321.

    Google Scholar 

  • Anese, S., Gualtieri, S. C. J., Grisi, P. U., Jatoba, L. D. J., & Arduin, M. (2015). Phytotoxic potential of Drimys brasiliensis Miers for use in weed control. Acta Scientiarum. Agronomy, 37(4), 505–516.

    Google Scholar 

  • Arafat, Y., Shahida, K., Lin, W., Fang, C., Sadia, S., Ali, N., & Azeem, S. (2015). Allelopathic evaluation of selected plants extract against broad and narrow leaves weeds and their associated crops. Academia Journal of Agricultural Research, 3(10), 226–234.

    CAS  Google Scholar 

  • Aslani, F., Juraimi, A. S., Ahmad-Hamdani, M. S., Omar, D., Alam, M. A., Hashemi, F. S. G. and Uddin, M. K. (2014). Allelopathic effect of methanol extracts from Tinospora tuberculata on selected crops and rice weeds. Acta Agriculturae Scandinavica, Section B–Soil and Plant Science, 64(2), 165–177.

    CAS  Google Scholar 

  • Ayeni, M., & Akinyede, O. (2014). Effects of Calotropis procera (Ait.) R. Br. leaves on the germination and early growth of soybeans (Glycine max (L) Merrill). IOSR Journal of Agriculture and Veterinary Science, 7(4), 5–9.

    Google Scholar 

  • Bertin, C., Harmon, R., Akaogi, M., Weidenhamer, J. D., & Weston, L. A. (2009). Assessment of the phytotoxic potential of m-tyrosine in laboratory soil bioassays. Journal of Chemical Ecology, 35(11), 1288.

    Article  CAS  PubMed  Google Scholar 

  • Bibak, H., & Jalali, M. (2016). Allelopathic effects of aqueous extracts of Bermuda grass (Cynodon dactylon L.) on germination, characteristics and seedling growth of corn (Zea maize L.). Agriculture Science Developments, 5(2), 11–13.

    Article  Google Scholar 

  • Bouchikh-Boucif, Y., Labani, A., Benabdeli, K., & Boidielouane, S. (2014). Allelopathic effects of shoot and root extracts from three alien and native Chenopodiaceae species on lettuce seed germination. Ecologia Balkanica, 6(2), 51–55.

    Google Scholar 

  • Bousquet-Melou, A., Louis, S., Robles, C., Greff, S., Dupouyet, S., & Fernandez, C. (2005). Allelopathic potential of Medicago arborea, a Mediterranean invasive shrub. Chemoecology, 15(4), 193–198.

    Article  CAS  Google Scholar 

  • Chaimovitsh, D., Abu-Abied, M., Belausov, E., Rubin, B., Dudai, N., & Sadot, E. (2010). Microtubules are an intracellular target of the plant terpene citral. The Plant Journal, 61(3), 399–408.

    Article  CAS  PubMed  Google Scholar 

  • Chiapusio, G., Pellissier, F., & Gallet, C. (2004). Uptake and translocation of phytochemical 2-benzoxazolinone (BOA) in radish seeds and seedlings. Journal of Experimental Botany, 55(402), 1587–1592.

    Article  CAS  PubMed  Google Scholar 

  • Chon, S. U., & Kim, J. D. (2002). Biological activity and quantification of suspected allelochemicals from alfalfa plant parts. Journal of Agronomy and Crop Science, 188(4), 281–285.

    Article  CAS  Google Scholar 

  • Chopra, N., Tewari, G., Tewari, L. M., Upreti, B., & Pandey, N. (2017). Allelopathic effect of Echinochloa colona L. and Cyperus iria L. weed extracts on the seed germination and seedling growth of rice and soybean. Advances in Agriculture, 2017(5748524), 1–5.

    Article  Google Scholar 

  • Darier, S. M., & Tammam, A. A. (2012). Potentially phytotoxic effect of aqueous extract of Achillea santolina induced oxidative stress on Vicia faba and Hordeum vulgare. Romanian Journal of Biology-Plant Biology, 57(1), 3–26.

    Google Scholar 

  • De Albuquerque, M. B., dos Santos, R. C., Lima, L. M., de Albuquerque Melo Filho, P., Nogueira, R. J. M. C., Da Câmara, C. A. G., & de Rezende Ramos, A. (2011). Allelopathy, an alternative tool to improve cropping systems. A review. Agronomy for Sustainable Development, 31(2), 379–395.

    Article  Google Scholar 

  • El Marsni, Z., Casas, L., Mantell, C., Rodríguez, M., Torres, A., Macias, F. A., & Varela, R. M. (2011). Potential allelopathic of the fractions obtained from sunflower leaves using supercritical carbon dioxide. The Journal of Supercritical Fluids, 60, 28–37.

    Article  CAS  Google Scholar 

  • Esmaeili, M., Heidarzade, A., & Esmaeili, F. (2012). Quantifying of common allelochemicals in root exudates of barnyardgrass (Echinochloa crus-galli L.) and inhibitory potential against rice (Oryza sativa) cultivars. American-Eurasian Journal of Agricultural & Environmental Sciences, 12(6), 700–705.

    CAS  Google Scholar 

  • Fahmy, G. M., Al-Sawaf, N. A., Turki, H., & Ali, H. I. (2012). Allelopathic potential of Pluchea dioscoridis (L.) DC. Journal of Applied Science Research, 8, 3129–3142.

    Google Scholar 

  • Fahn, A. (2000). Structure and function of secretory cells. Advances in Botanical Reseach, 31, 37–75.

    Article  CAS  Google Scholar 

  • Fujii, Y., Furubayashi, A., & Hiradate, S. (2005). Rhizosphere soil method: A new bioassay to evaluate allelopathy in the field. In J. D. I. Harper, M. An, H. Wu, & J. H. Kent (Eds.), Proceedings of the 4th world congress on allelopathy establishing the scientific base (pp. 490–492). Wagga Wagga, NSW: Charles Sturt University.

    Google Scholar 

  • Fujii, Y., Matsuyama, M., Hiradate, S., & Shimozawa, H. (2005). Dish pack method: A new bioassay for volatile allelopathy. In J. D. I. Harper, M. An, H. Wu, & J. H. Kent (Eds.), Proceedings of the 4th world congress on allelopathy, “establishing the scientific base” (pp. 493–497). Wagga Wagga, NSW: Charles Sturt University.

    Google Scholar 

  • Fujii, Y., Parvez, S. S., Parvez, M. M., Ohmae, Y., & Iida, O. (2003). Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biology and Management, 3(4), 233–241.

    Article  Google Scholar 

  • Gatti, A. B., Ferreira, A. G., Arduin, M., & Perez, S. C. G. D. A. (2010). Allelopathic effects of aqueous extracts of Artistolochia esperanzae O. Kuntze on development of Sesamum indicum L. seedlings. Acta Botanica Brasilica, 24(2), 454–461.

    Article  Google Scholar 

  • Gealy, D., Moldenhauer, K., & Duke, S. (2013). Root distribution and potential interactions between allelopathic rice, sprangletop (Leptochloa spp.), and barnyardgrass (Echinochloa crus-galli) based on 13 C isotope discrimination analysis. Journal of Chemical Ecology, 39(2), 186–203.

    Article  CAS  PubMed  Google Scholar 

  • Golzardi, F., Vaziritabar, Y., Vaziritabar, Y., Asilan, K. S., Hasan, M., Sayadi, J., & Sarvaramini, S. (2014). Allelopathic effect of two Cynanchum acutum L. populations on emergence and shoot development of corn. International Journal of Advanced Life Sciences, 7(4), 615–627.

    Google Scholar 

  • Golzardi, F., Vaziritabar, Y., Vaziritabar, Y., Asilan, K. S., Ebadi, S. Z., Sarvaramini, S., & Sayadi, M. H. J. (2015). Allelopathy effect of two Cynanchum acutum L. populations on emergence and shoot development of barley. Journal of Applied Environmental and Biological Sciences, 5(1), 166–175.

    Google Scholar 

  • Gomaa, N. H., & Abdelgawad, H. R. (2012). Phytotoxic effects of Echinochloa colona (L.) Link. (Poaceae) extracts on the germination and seedling growth of weeds. Spanish Journal of Agricultural Research, 10(2), 492–501.

    Article  Google Scholar 

  • Gulzar, A., & Siddiqui, M. B. (2015a). Allelopathic effect of Calotropis procera (Ait.) R. Br. on growth and antioxidant activity of Brassica oleracea var. botrytis. Journal of the Saudi Society of Agricultural Sciences, 16(4), 375–382.

    Article  Google Scholar 

  • Gulzar, A., & Siddiqui, M. B. (2015b). Root-mediated allelopathic interference of bhringraj (Eclipta alba L.) Hassk. on peanut (Arachis hypogaea) and mung bean (Vigna radiata). Applied Soil Ecology, 87, 72–80.

    Article  Google Scholar 

  • Gulzar, A., Siddiqui, M. B., & Arerath, U. (2014a). Phytotoxic effects of Calotropis procera (Ait.) R. Br. Extract on three weed plants. Analele Universitatii Din Oradea Fascicula Biologie, 21(2), 57–60.

    Google Scholar 

  • Gulzar, A., Siddiqui, M. B., & Ansari, S. (2014b). Assessment of allelopathic potential of Cassia sophera L. on seedling growth and physiological basis of weed plants. African Journal of Biotechnology, 13(9), 037–1047.

    Google Scholar 

  • Gulzar, A., Siddiqui, M. B., & Ansari, S. (2016). Phenolic acid allelochemicals induced morphological, ultrastructural, and cytological modification on Cassia sophera L. and Allium cepa L. Protoplasma, 253(5), 1211–1221.

    Article  CAS  PubMed  Google Scholar 

  • Hao, Z. P., Wang, Q., Christie, P., & Li, X. L. (2007). Allelopathic potential of watermelon tissues and root exudates. Scientia Horticulturae, 112(3), 315–320.

    Article  CAS  Google Scholar 

  • Herranz, J. M., Ferrandis, P., Copete, M. A., Duro, E. M., & Zalacaín, A. (2006). Effect of allelopathic compounds produced by Cistus ladanifer on germination of 20 Mediterranean taxa. Plant Ecology, 184(2), 259–272.

    Article  Google Scholar 

  • Husna, Shah, M., Sayyed, A., Shabeena, Aziz, L., Ismail and Gul, H. (2016). Allelopathic effect of Salvia plebia R. Brown on germination and growth of Zea mays var. 30-25 Hybrid, Triticum astivum var. Pirsabak-04 and Sorghum bicolor L. Journal of Applied Environmental and Biological Sciences, 6(4), 93-104.

    Google Scholar 

  • Hussain, M. I., & Reigosa, M. J. (2011). Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. Journal of Experimental Botany, 62(13), 4533–4545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inderjit, & Callaway, R. M. (2003). Experimental designs for the study of allelopathy. Plant and Soil, 256(1), 1–11.

    Article  CAS  Google Scholar 

  • Inderjit, Dahl, C. C. V., & Baldwin, I. T. (2009). Use of silenced plants in allelopathy bioassays: A novel approach. Planta, 229(3), 559–575.

    Article  CAS  Google Scholar 

  • Inderjit, & Dakshini, K. M. M. (1995). On laboratory bioassays in allelopathy. Botanical Review, 61, 28–44.

    Article  Google Scholar 

  • Inderjit, & Nilsen, E. T. (2003). Bioassays and field studies for allelopathy in terrestrial plants: Progress and problems. Critical Reviews in Plant Sciences, 22(3–4), 221–238.

    Article  Google Scholar 

  • Islam, A. K. M., & Kato-Noguchi, H. (2014). Allelopathic activity of Leonurus sibiricus on different target plant species. Journal of Food, Agriculture and Environment, 12, 286–289.

    Google Scholar 

  • Islam, A. K. M., Ohno, O., Suenaga, K., & Kato-Noguchi, H. (2014). Suaveolic acid: A potent phytotoxic substance of Hyptis suaveolens. The Scientific World Journal, 2014(425942), 1–6.

    Google Scholar 

  • Jayaraman, P., & Ramalingam, A. (2014). Allelopathy potential of invasive alien species Ageratium conyzoides L.on growth and development of green gram [Vignaradiata (L.) R. Wilczek] and black gram [Vigna mungo (L.) Hepper]. International Journal of Advances in Pharmacy, Biology and Chemistry, 3(2), 437–442.

    Google Scholar 

  • Katoch, R., Singh, A., & Thakur, N. (2012). Effect of weed residues on the physiology of common cereal crops. Crops, 2(5), 828–834.

    Google Scholar 

  • Kaur, S., Singh, H. P., Batish, D. R., & Kohli, R. K. (2012). Phytotoxicity of decomposing below-ground residues of Ageratum conyzoides: nature and dynamics of release of phytotoxins. Acta Physiologiae Plantarum, 34(3), 1075–1081.

    Article  CAS  Google Scholar 

  • Kengar, Y. D., & Patil, B. J. (2018). Allelopathic influence of Celosia Argentea L. against α-amylase activity in Lens Culanaris Medic. during seed germination. International Journal for Science and Advance Research in Technology, 4(1), 420–423.

    Google Scholar 

  • Khalid, S., Ahmad, T., & Shad, R. A. (2002). Use of allelopathy in agriculture. Asian Journal of Plant Sciences, 1(3), 292–297.

    Article  Google Scholar 

  • Khaliq, A., Hussain, S., Matloob, A., Wahid, A., & Aslam, F. (2013). Aqeous swine cress (Coronopus didymus) extracts inhibit wheat germination and early seedling growth. International Journal of Agriculture and Biology, 15(4), 743–748.

    Google Scholar 

  • Khaliq, A., Hussain, S., Matloob, A., Tanveer, A., & Aslam, F. (2014). Swine cress (Cronopus didymus L. Sm.) residues inhibit rice emergence and early seedling growth. The Philippine Agricultural Scientist, 96(4), 419–425.

    Google Scholar 

  • Khan, M. A., Umm-e-Kalsoom, Khan, M. I., Khan, R., Khan, S. A. (2011a). Screening the allelopathic potential of various weeds. Pakistan Journal of Weed Science Research, 17(1), 73-81.

    Google Scholar 

  • Khan, M., Farrukh, H., & Shahana, M. (2011b). Allelopathic potential of Rhazya stricta Decne. on germination of Pennisetum typhoides. International Journal of Biosciences, 1(4), 80–85.

    Google Scholar 

  • Labbafi, M. R., Hejazi, A., Maighany, F., Khalaj, H., & Mehrafarin, A. (2010). Evaluation of allelopathic potential of Iranian wheat (Triticum aestivum L.) cultivars against weeds. Agriculture and Biology Journal of North America, 1, 355–361.

    Article  Google Scholar 

  • Ladhari, A., Omezzine, F., Dellagreca, M., Zarrelli, A., & Haouala, R. (2013). Phytotoxic activity of Capparis spinosa L. and its discovered active compounds. Allelopathy Journal, 32(2), 175–190.

    Google Scholar 

  • Liu, X., Tian, F., Tian, Y., Wu, Y., Dong, F., Xu, J., & Zheng, Y. (2016). Isolation and identification of potential allelochemicals from aerial parts of Avena fatua L. and their allelopathic effect on wheat. Journal of Agricultural and Food Chemistry, 64(18), 3492–3500.

    Article  CAS  PubMed  Google Scholar 

  • Loi, R. X., Solar, M. C., & Weidenhamer, J. D. (2008). Solid-phase microextraction method for in vivo measurement of allelochemical uptake. Journal of Chemical Ecology, 34(1), 70–75.

    Article  CAS  PubMed  Google Scholar 

  • Macias, F. A., Oliva, R. M., Varela, R. M., Torres, A., & Molinillo, J. M. (1999). Allelochemicals from sunflower leaves cv. Peredovick. Phytochemistry, 52(4), 613–621.

    Article  CAS  Google Scholar 

  • Madane, A. N., & Patil, B. J. (2017). Allelopathic effect of Eupatorium odoratum L. on amylase activity during seed germination of Cicer arietinum L. and Cajanuscajan (L) Millsp. Bioscience Discovery, 8(1), 82–86.

    Google Scholar 

  • Mahmoodzadeh, H., Ghasemi, M., & Zanganeh, H. (2015). Allelopathic effect of medicinal plant Cannabis sativa L. on Lactuca sativa L. seed germination. Acta Agriculturae Slovenica, 105(2), 233–239.

    Article  Google Scholar 

  • Majeed, A., Chaudhry, Z., & Muhammad, Z. (2012). Allelopathic assessment of fresh aqueous extracts of Chenopodium album L. for growth and yield of wheat (Triticum aestivum L.). Pakistan Journal of Botany, 44(1), 165–167.

    Google Scholar 

  • Manikandan, V., & Prabhakaran, J. (2014). Allelopathic influence of some weed residues on growth and developmental changes of green gram (Vigna Radiata (L.) Wilczek). International Journal of Current Biotechnology, 2(3), 6–10.

    Google Scholar 

  • Mardani, R., & Yousefi, A. R. (2012). Using image analysis to study the allelopathic potential of wheat cultivars against wild barley (Hordeum spontaneum). International Journal of Applied & Basic Medical Research, 3, 2281–2288.

    Google Scholar 

  • Mawal, S. S., Shahnawaz, M., Sangale, M. K., & Ade, A. B. (2015). Assessment of allelopathic potential of the roots of Parthenium hysterophorus L. on some selected crops. International Journal of Scientific Research in Knowledge, 3(6), 145–152.

    Article  CAS  Google Scholar 

  • Matloob, A., Khaliq, A., Farooq, M., & Cheema, Z. A. (2010). Quantification of allelopathic potential of different crop residues for the purple nutsedge suppression. Pakistan Journal of Weed Science Research, 16(1), 1–12.

    Google Scholar 

  • Mohammadkhani, N., & Servati, M. (2018). Nutrient concentration in wheat and soil under allelopathy treatments. Journal of Plant Research, 131(1), 143–155.

    Article  CAS  PubMed  Google Scholar 

  • Mohney, B. K., Matz, T., LaMoreaux, J., Wilcox, D. S., Gimsing, A. L., Mayer, P., & Weidenhamer, J. D. (2009). In situ silicone tube microextraction: A new method for undisturbed sampling of root-exuded thiophenes from marigold (Tagetes erecta L.) in soil. Journal of Chemical Ecology, 35(11), 1279.

    Article  CAS  PubMed  Google Scholar 

  • Molisch, H. (1937). Der Einfluss einer Pflanze auf die andere-Allelopathic. Jene, Germany: G. Fischer.

    Google Scholar 

  • Morikawa, C. I. O., Miyaura, R., Kamo, T., Hiradate, S., Perez, J. A. C., & Fujii, Y. (2011). Isolation of umbelliferone as a principal allelochemical from the Peruvian medicinal plant Diplostephium foliosissimum (Asteraceae). Revista de la Sociedad Quimica del Peru, 77(4), 285–291.

    CAS  Google Scholar 

  • Muller, C. H. (1969). Allelopathy as a factor in ecological process. Plant Ecology, 18(1), 348–357.

    Article  Google Scholar 

  • Nasrine, S., & El-Taher, S. E. D. H. (2013). Allelopathic effect of Euphorbia guyoniana aqueous extract and their potential uses as natural herbicides. Sains Malaysiana, 42(10), 1501–1504.

    Google Scholar 

  • Natarajan, A., Elavazhagan, P., & Prabhakaran, J. (2014). Allelopathic potential of billy goat weed Ageratum Conyzoides L. and Cleome Viscosa L. on germination and growth of Sesamum Indicum L. International Journal of Current Biotechnology, 2(2), 21–24.

    Google Scholar 

  • Naz, R., & Bano, A. (2013). Effects of Calotropis procera and Citrullus colosynthis on germination and seedling growth of maize. Allelopathy Journal, 31(1), 105–116.

    Google Scholar 

  • Oueslati, O. (2003). Allelopathy in two durum wheat (Triticum durum L.) varieties. Agriculture, Ecosystems & Environment, 96(1–3), 161–163.

    Article  Google Scholar 

  • Putnam, A. R., & Tang, C. S. (1986). Allelopathy: State of the science. In A. R. Putnam & C. S. Tang (Eds.), The science of allelopathy (pp. 1–19). New York, NY: Wiley.

    Google Scholar 

  • Ramgunde, V. and Chaturvedi, A. (2016). Allelopathic effect of Ricinus communis L. and Vitex negundo L. on morphological attributes of invasive alien weed: Cassia uniflora Mill. IRA-International Journal of Applied Sciences, 3(3), 438–447.

    Google Scholar 

  • Raoof, K. A., & Siddiqui, M. B. (2012). Allelopathic effect of aqueous extracts of different parts of Tinospora cordifolia (Willd.) Miers on some weed plants. Journal of Agricultural Extension and Rural Development, 4(6), 115–119.

    Google Scholar 

  • Reigosa, M. J., Souto, X. C., & Gonz, L. (1999). Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regulation, 28(2), 83–88.

    Article  CAS  Google Scholar 

  • Rezaie, F., & Yarnia, M. (2009). Allelopathic effects of Chenopodium album, Amaranthus retroflexus and Cynodon dactylon on germination and growth of safflower. Journal of Food, Agriculture and Environment, 7, 516–521.

    Google Scholar 

  • Rice, E. L. (1984). Allelopathy (2nd ed., p. 421). New York, NY: Academic Press.

    Google Scholar 

  • Sahid, I., & Yusoff, N. (2014). Allelopathic effects of’ Chromolaena odorata ‘(L.) King and Robinson and Mikania micrantha HBK on three selected weed species. Australian Journal of Crop Science, 8(7), 1024.

    Google Scholar 

  • San Emeterio, L., Arroyo, A., & Canals, R. M. (2004). Allelopathic potential of Lolium rigidum Gaud. on the early growth of three associated pasture species. Grass and Forage Science, 59(2), 107–112.

    Article  Google Scholar 

  • Sarkar, E., Chatterjee, S. N., & Chakraborty, P. (2012). Allelopathic effect of Cassia tora on seed germination and growth of mustard. Turkish Journal of Botany, 36(5), 488–494.

    CAS  Google Scholar 

  • Scognamiglio, M. (2011). Phytochemical analysis of Mediterranean plants: Metabolomic approach to study allelopathic interactions among coexisting species (Ph.D. dissertation, Second University of Naples).

    Google Scholar 

  • Scognamiglio, M., D’Abrosca, B., Esposito, A., Pacifico, S., Monaco, P., & Fiorentino, A. (2013). Plant growth inhibitors: Allelopathic role or phytotoxic effects? Focus on Mediterranean biomes. Phytochemistry Reviews, 12(4), 803–830.

    Article  CAS  Google Scholar 

  • Scognamiglio, M., Esposito, A., D’Abrosca, B., Pacifico, S., Fiumano, V., Tsafantakis, N., & Fiorentino, A. (2012). Isolation, distribution and allelopathic effect of caffeic acid derivatives from Bellis perennis L. Biochemical Systematics and Ecology, 43, 108–113.

    Article  CAS  Google Scholar 

  • Scognamiglio, M., Fiumano, V., D’Abrosca, B., Pacifico, S., Messere, A., Esposito, A., & Fiorentino, A. (2012). Allelopathic potential of alkylphenols from Dactylis glomerata subsp. hispanica (Roth) Nyman. Phytochemistry Reviews, 5(1), 206–210.

    Article  CAS  Google Scholar 

  • Scrivanti, L. R. (2010). Allelopathic potential of Bothriochloa laguroides var. laguroides (DC.) Herter (Poaceae: Andropogoneae). Flora-Morphology, Distribution, Functional Ecology of Plants, 205(5), 302–305.

    Article  Google Scholar 

  • Sharma, M., & Devkota, A. (2018). Allelopathic Influences of Artemisia Dubia Wall. Ex. Besser on Seed Germination and Seedling Vigor of Parthenium Hysterophorus L. Journal of Institute of Science and Technology, 22(2), 117–128.

    Google Scholar 

  • Silva, M. P., Piazza, L. A., Lopez, D., Rivilli, M. J. L., Turco, M. D., Cantero, J. J., & Scopel, A. L. (2012). Phytotoxic activity in Flourensia campestris and isolation of (−)-hamanasic acid A as its active principle compound. Phytochemistry, 77, 140–148.

    Article  CAS  PubMed  Google Scholar 

  • Singh, H. P., Batish, D. R., & Kohli, R. K. (2001). Allelopathy in agroecosystems: An overview. Journal of Crop Production, 4920, 1–41.

    Article  Google Scholar 

  • Suwitchayanon, P., Pukclai, P., & Kato-Noguchi, H. (2013). Allelopathic activity of Cymbopogon nardus (Poaceae): A preliminary study. Journal of Plant Studies, 2(2), 1–6.

    Article  Google Scholar 

  • Szczepanski, A. J. (1977). Allelopathy as a means of biological control of water weeds. Aquatic Botany, 3, 193–197.

    Article  Google Scholar 

  • Tanveer, A., Rehman, A., Javaid, M. M., Abbas, R. N., Sibtain, M., Ahmad, A. U. H., & Aziz, A. (2010). Allelopathic potential of Euphorbia helioscopia L. against wheat (Triticum aestivum L.), chickpea (Cicer arietinum L.) and lentil (Lens culinaris Medic.). Turkish Journal of Agriculture and Forestry, 34(1), 75–81.

    Google Scholar 

  • Teerarak, M., Laosinwattana, C., & Charoenying, P. (2010). Evaluation of allelopathic, decomposition and cytogenetic activities of Jasminum officinale L. f. var. grandiflorum (L.) Kob. on bioassay plants. Bioresource Technology, 101(14), 5677–5684.

    Article  CAS  PubMed  Google Scholar 

  • Thi, H. L., Lan, P. T. P., Chin, D. V., & Kato-Noguchi, H. (2008). Allelopathic potential of cucumber (Cucumis sativus) on barnyardgrass (Echinochloa crus-galli). Weed Biology and Management, 8(2), 129–132.

    Article  Google Scholar 

  • Weidenhamer, J. D., Boes, P. D., & Wilcox, D. S. (2009). Solid-phase root zone extraction (SPRE): A new methodology for measurement of allelochemical dynamics in soil. Plant and Soil, 322(1–2), 177–186.

    Article  CAS  Google Scholar 

  • Weston, L. A. (2005). History and current trends in the use of allelopathy for weed management. Cornell University Turfgrass Times, 13, 529–534.

    Google Scholar 

  • Willis, R. J. (1985). The historical bases of the concept of allelopathy. Journal of the History of Biology, 18, 71–102.

    Article  Google Scholar 

  • Willis, R. J. (1997). The history of allelopathy. 2. The second phase (1900 - 1920). The era of S. U. Pickering and the USDA Bureau of Soils. Allelopathy Journal, 4, 7–56.

    Google Scholar 

  • Willis, R. J. (2000). Juglans spp., juglone and allelopathy. Allelopathy Journal, 7, 1–55.

    Google Scholar 

  • Wu, H., Pratley, J., Lemerle, D., & Haig, T. (2000). Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment-agar method. Australian Journal of Agricultural Research, 51(7), 937–944.

    Article  Google Scholar 

  • Wu, H., Pratley, J., Lemerle, D., & Haig, T. (2001). Allelopathy in wheat (Triticum aestivum). Annals of Applied Biology, 139(1), 1–9.

    Article  CAS  Google Scholar 

  • Yang, C. Y., Liu, S. J., Zhou, S. W., Wu, H. F., Yu, J. B., & Xia, C. H. (2011). Allelochemical ethyl 2-methyl acetoacetate (EMA) induces oxidative damage and antioxidant responses in Phaeodactylum tricornutum. Pesticide Biochemistry and Physiology, 100(1), 93–103.

    Article  CAS  Google Scholar 

  • Zeng, R. S., Mallik, A. U., & Luo, S. M. (2008). Allelopathy in sustainable agriculture and forestry. New York, NY: Springer.

    Book  Google Scholar 

  • Zhang, Y., Gu, M., Shi, K., Zhou, Y. H., & Yu, J. Q. (2010). Effects of aqueous root extracts and hydrophobic root exudates of cucumber (Cucumis sativus L.) on nuclei DNA content and expression of cell cycle-related genes in cucumber radicles. Plant and Soil, 327(1–2), 455–463.

    Article  CAS  Google Scholar 

  • Zhu, H., Wu, S., Wu, Q., & Peng, C. (2013). Isolation and identification of autotoxic chemicals from Angelica sinensis (Oliv.) Diels. Journal of Food, Agriculture and Environment, 11(3/4), 2136–2140.

    Google Scholar 

  • Zuo, S. P., Ma, Y. Q., & Ye, L. T. (2012). In vitro assessment of allelopathic effects of wheat on potato. Allelopathy Journal, 30(1), 1–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mushtaq, W., Siddiqui, M.B., Hakeem, K.R. (2020). History of Allelopathy. In: Allelopathy. SpringerBriefs in Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-40807-7_2

Download citation

Publish with us

Policies and ethics