Skip to main content

Support Vector Machine as Tool for Classifying Coffee Beverages

  • Conference paper
  • First Online:
Book cover Information Technology and Systems (ICITS 2020)

Abstract

Classifiers are tools widely used nowadays to process data and obtain prediction models that are trained through supervised learning techniques; there is a wide variety of sensors that acquire the data to be processed, such as the voltammetric electronic tongue, as a device employed to analyze food compounds. This paper presents a normal and decaffeinated coffee beverage classifier using a Support Vector Machine with a linear separation function, detailing the classification function and the model optimization method; to train the model, the data measured by 4 electrodes of a voltammetric tongue that is excited by a predetermined sequence of positive pulses is used. In addition, the results graphically show the measurements obtained, the support vectors and the evaluation data, the values of the classifier parameters are also presented. Finally, the conclusions establish an acceptable error in the classification of coffee drinks according to caffeine presence at the sample analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salah, K., Rehman, M.H.U., Nizamuddin, N., Al-Fuqaha, A.: Blockchain for AI: review and open research challenges. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2018.2890507

    Article  Google Scholar 

  2. Lu, H., Li, Y., Chen, M., Kim, H., Serikawa, S.: Brain intelligence: go beyond artificial intelligence. Mob. Networks Appl. (2018). https://doi.org/10.1007/s11036-017-0932-8

    Article  Google Scholar 

  3. Çaliş, B., Bulkan, S.: A research survey: review of AI solution strategies of job shop scheduling problem. J. Intell. Manuf. (2015). https://doi.org/10.1007/s10845-013-0837-8

    Article  Google Scholar 

  4. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs (2016). https://doi.org/10.1109/JPROC.2015.2483592

    Article  Google Scholar 

  5. Jara Estupiñan, J., Giral, D., Martínez Santa, F.: Implementación de algoritmos basados en máquinas de soporte vectorial (SVM) para sistemas eléctricos: revisión de tema. Rev. Tecnura. 20, 149–170 (2016). https://doi.org/10.14483/udistrital.jour.tecnura.2016.2.a11

  6. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence (2015). https://doi.org/10.1038/nature14541

    Article  Google Scholar 

  7. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning of universal sentence representations from natural language inference data (2018). https://doi.org/10.18653/v1/d17-1070

  8. Zendehboudi, A., Baseer, M.A., Saidur, R.: Application of support vector machine models for forecasting solar and wind energy resources: a review (2018). https://doi.org/10.1016/j.jclepro.2018.07.164

    Article  Google Scholar 

  9. Yang, D., Liu, Y., Li, S., Li, X., Ma, L.: Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorithm. Mech. Mach. Theory (2015). https://doi.org/10.1016/j.mechmachtheory.2015.03.013

    Article  Google Scholar 

  10. He, H., Kong, F., Tan, J.: DietCam: multiview food recognition using a multikernel SVM. IEEE J. Biomed. Health Inform. (2016). https://doi.org/10.1109/JBHI.2015.2419251

    Article  Google Scholar 

  11. Guevara, C., Sanchez-Gordon, S., Arias-Flores, H., Varela-Aldás, J., Castillo-Salazar, D., Borja, M., Fierro-Saltos, W., Rivera, R., Hidalgo-Guijarro, J., Yandún-Velasteguí, M.: Detection of student behavior profiles applying neural networks and decision trees. In: Advances in Intelligent Systems and Computing, pp. 591–597 (2020). https://doi.org/10.1007/978-3-030-27928-8_90

    Google Scholar 

  12. Fuentes, E., Alcañiz, M., Contat, L., Baldeón, E.O., Barat, J.M., Grau, R.: Influence of potential pulses amplitude sequence in a voltammetric electronic tongue (VET) applied to assess antioxidant capacity in aliso. Food Chem. (2017). https://doi.org/10.1016/j.foodchem.2016.12.076

    Article  Google Scholar 

  13. Ciocca, G., Napoletano, P., Schettini, R.: Food recognition: a new dataset, experiments, and results. IEEE J. Biomed. Health Inform. (2017). https://doi.org/10.1109/JBHI.2016.2636441

    Article  Google Scholar 

  14. Loutfi, A., Coradeschi, S., Mani, G.K., Shankar, P., Rayappan, J.B.B.: Electronic noses for food quality: a review (2015). https://doi.org/10.1016/j.jfoodeng.2014.07.019

    Article  Google Scholar 

  15. Arrieta, Á.A., Rodríguez-Méndez, M.L., De Saja, J.A.: Aplicación de una lengua electrónica voltamétrica para la clasificación de vinos y estudio de correlación con la caracterización química y sensorial. Quim. Nova 33(4), 787–793 (2010)

    Article  Google Scholar 

  16. Gamboa, A.A., Cáceres, P.A., Lamos, H., Zárate, D.A., Puentes, D.E.: Predictive model for cocoa yield in Santander using Supervised Machine Learning. In: 2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings (2019). https://doi.org/10.1109/STSIVA.2019.8730258

  17. Chen, M.Y., Yang, Y.H., Ho, C.J., Wang, S.H., Liu, S.M., Chang, E., Yeh, C.H., Ouhyoung, M.: Automatic Chinese food identification and quantity estimation. In: SIGGRAPH Asia 2012 Technical Briefs, SA 2012 (2012). https://doi.org/10.1145/2407746.2407775

  18. Rodrigues, D.R., de Oliveira, D.S.M., Pontes, M.J.C., Lemos, S.G.: Voltammetric e-tongue based on a single sensor and variable selection for the classification of teas. Food Anal. Methods (2018). https://doi.org/10.1007/s12161-018-1162-9

    Article  Google Scholar 

  19. de Morais, T.C.B., Rodrigues, D.R., de Carvalho Polari Souto, U.T., Lemos, S.G.: A simple voltammetric electronic tongue for the analysis of coffee adulterations. Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2018.04.136

    Article  Google Scholar 

  20. Peris, M., Escuder-Gilabert, L.: Electronic noses and tongues to assess food authenticity and adulteration (2016). https://doi.org/10.1016/j.tifs.2016.10.014

    Article  Google Scholar 

  21. Alcañiz Fillol, M.: Diseño de un sistema de lengua electrónica basado en técnicas electroquímicas voltamétricas y su aplicación en el ámbito agroalimentario, p. 295 (2011)

    Google Scholar 

  22. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press (2013). https://doi.org/10.1017/CBO9780511801389

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Varela-Aldás or Esteban M. Fuentes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varela-Aldás, J., Fuentes, E.M., Buele, J., Meló, R.G., Barat, J.M., Alcañiz, M. (2020). Support Vector Machine as Tool for Classifying Coffee Beverages. In: Rocha, Á., Ferrás, C., Montenegro Marin, C., Medina García, V. (eds) Information Technology and Systems. ICITS 2020. Advances in Intelligent Systems and Computing, vol 1137. Springer, Cham. https://doi.org/10.1007/978-3-030-40690-5_27

Download citation

Publish with us

Policies and ethics