Alcantarilla, P.F., Solutions, T.: Fast explicit diffusion for accelerated features in nonlinear scale spaces. IEEE Trans. Patt. Anal. Mach. Intell 34(7), 1281–1298 (2011)
Google Scholar
Bian, J., Lin, W.Y., Matsushita, Y., Yeung, S.K., Nguyen, T.D., Cheng, M.M.: GMS: grid-based motion statistics for fast, ultra-robust feature correspondence. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4181–4190 (2017)
Google Scholar
Chopra, S., Hadsell, R., LeCun, Y., et al.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR (1), pp. 539–546 (2005)
Google Scholar
DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: self-supervised interest point detection and description. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2018)
Google Scholar
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
MathSciNet
CrossRef
Google Scholar
Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, vol. 37, pp. 1180–1189. JMLR.org (2015)
Google Scholar
Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)
MathSciNet
Google Scholar
Kramer, S.: A bayesian perspective on why the EKF fails in passive tracking. In: Proceedings of the IEEE 1996 National Aerospace and Electronics Conference NAECON 1996, vol. 1, pp. 98–101. IEEE (1996)
Google Scholar
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, ICCV 1999, vol. 2, p. 1150. IEEE Computer Society, Washington, DC (1999)
Google Scholar
Maddern, W., Pascoe, G., Linegar, C., Newman, P.: 1 Year, 1000km: the Oxford RobotCar dataset. Int. J. Robot. Res. (IJRR) 36(1), 3–15 (2017)
CrossRef
Google Scholar
Melekhov, I., Tiulpin, A., Sattler, T., Pollefeys, M., Rahtu, E., Kannala, J.: DGC-net: dense geometric correspondence network. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1034–1042. IEEE (2019)
Google Scholar
Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 0756–777 (2004)
CrossRef
Google Scholar
Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4161–4170 (2017)
Google Scholar
Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Deepmatching: hierarchical deformable dense matching. Int. J. Comput. Vision 120(3), 300–323 (2016)
MathSciNet
CrossRef
Google Scholar
Rocco, I., Cimpoi, M., Arandjelović, R., Torii, A., Pajdla, T., Sivic, J.: Neighbourhood consensus networks. In: Proceedings of the 32nd Conference on Neural Information Processing Systems (2018)
Google Scholar
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: Proceedings of the 2011 International Conference on Computer Vision, ICCV 2011, pp. 2564–2571. IEEE Computer Society, Washington, DC (2011)
Google Scholar
Sattler, T., et al.: Benchmarking 6dof outdoor visual localization in changing conditions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8601–8610 (2018)
Google Scholar
Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)
Google Scholar
Trzcinski, T., Komorowski, J., Dabala, L., Czarnota, K., Kurzejamski, G., Lynen, S.: Scone: siamese constellation embedding descriptor for image matching. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)
Google Scholar
Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: Deepflow: large displacement optical flow with deep matching. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1385–1392 (2013)
Google Scholar