Skip to main content

Evaluation of Unconditioned Deep Generative Synthesis of Retinal Images

  • Conference paper
  • First Online:
Book cover Advanced Concepts for Intelligent Vision Systems (ACIVS 2020)

Abstract

Retinal images have been increasingly important in clinical diagnostics of several eye and systemic diseases. To help the medical doctors in this work, automatic and semi-automatic diagnosis methods can be used to increase the efficiency of diagnostic and follow-up processes, as well as enable wider disease screening programs. However, the training of advanced machine learning methods for improved retinal image analysis typically requires large and representative retinal image data sets. Even when large data sets of retinal images are available, the occurrence of different medical conditions is unbalanced in them. Hence, there is a need to enrich the existing data sets by data augmentation and introducing noise that is essential to build robust and reliable machine learning models. One way to overcome these shortcomings relies on generative models for synthesizing images. To study the limits of retinal image synthesis, this paper focuses on the deep generative models including a generative adversarial network and a variational autoencoder to synthesize images from noise without conditioning on any information regarding to the retina. The models are trained with the Kaggle EyePACS retinal image set, and for quantifying the image quality in a no-reference manner, the generated images are compared with the retinal images of the DiaRetDB1 database using common similarity metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The source code and the materials: https://github.com/kaplansinan/MasterThesis.

  2. 2.

    The source code and the materials: https://github.com/kaplansinan/MasterThesis.

References

  1. Andreini, P., Bonechi, S., Bianchini, M., Mecocci, A., Scarselli, F., Sodi, A.: A two stage GAN for high resolution retinal image generation and segmentation. Technical report, University of Siena, July 2019. https://arxiv.org/abs/1907.12296v1

  2. Bonaldi, L., Menti, E., Ballerini, L., Ruggeri, A., Trucco, E.: Automatic generation of synthetic retinal fundus images: vascular network. Procedia Comput. Sci. 90, 54–60 (2016)

    Article  Google Scholar 

  3. Borji, A.: Pros and cons of GAN evaluation measures. arXiv preprint arXiv:1802.03446 (2018)

  4. Burlina, P.M., Joshi, N., Pacheco, K.D., Liu, T.Y.A., Bressler, N.M.: Assessment of deep generative models for high-resolution synthetic retinal image generation of age-related macular degeneration. JAMA Ophthalmol. 137(3), 258–264 (2019). https://doi.org/10.1001/jamaophthalmol.2018.6156, https://jamanetwork.com/journals/jamaophthalmology/fullarticle/2720489

    Article  Google Scholar 

  5. Burt, P., Adelson, E.: The laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)

    Article  Google Scholar 

  6. Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W.F., Sun, J.: Generating multi-label discrete electronic health records using generative adversarial networks. arXiv preprint arXiv:1703.06490 (2017)

  7. Costa, P., et al.: Towards adversarial retinal image synthesis. arXiv preprint arXiv:1701.08974 (2017)

  8. Davis, H., Russell, S., Barriga, E., Abramoff, M., Soliz, P.: Vision-based, real-time retinal image quality assessment. In: 22nd IEEE International Symposium on Computer-Based Medical Systems, CBMS 2009, pp. 1–6. IEEE (2009)

    Google Scholar 

  9. Deng, L., Yu, D., et al.: Deep learning: methods and applications. Found. Trends® Sig. Process. 7(3–4), 197–387 (2014)

    Article  MathSciNet  Google Scholar 

  10. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a laplacian pyramid of adversarial networks. In: Advances in Neural Information Processing Systems, pp. 1486–1494 (2015)

    Google Scholar 

  11. Diabetic retinopathy detection | kaggle, May 2017. https://www.kaggle.com/c/diabetic-retinopathy-detection

  12. Fang, L., et al.: Fast acquisition and reconstruction of optical coherence tomography images via sparse representation. IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013)

    Article  Google Scholar 

  13. Fasih, M.: Retinal image quality assessment using supervised classification. Ph.D. thesis, École Polytechnique de Montréal (2014)

    Google Scholar 

  14. Fiorini, S., Ballerini, L., Trucco, E., Ruggeri, A.: Automatic generation of synthetic retinal fundus images. In: Eurographics Italian Chapter Conference, pp. 41–44 (2014)

    Google Scholar 

  15. Gauthier, J.: Conditional generative adversarial nets for convolutional face generation. Class Project for Stanford CS231N: Convolutional Neural Networks for Visual Recognition, Winter Semester 2014, 5 (2014)

    Google Scholar 

  16. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  17. Gorijala, M., Dukkipati, A.: Image generation and editing with variational info generative adversarial networks. arXiv preprint arXiv:1701.04568 (2017)

  18. Hoff, P.D., Raftery, A.E., Handcock, M.S.: Latent space approaches to social network analysis. J. Am. Stat. Assoc. 97(460), 1090–1098 (2002)

    Article  MathSciNet  Google Scholar 

  19. Kaplan, S.: Deep generative models for synthetic retinal image generation. Master’s thesis, Lappeenranta University of Technology (2017). http://urn.fi/URN:NBN:fi-fe201708047855

  20. Kauppi, T., et al.: Diaretdb1-standard diabetic retino-pathy database. IMAGERET Optimal Detection and Decision-Support Diagnosis of Diabetic Retinopathy (2007)

    Google Scholar 

  21. Keane, P.A., Sadda, S.R.: Retinal imaging in the twenty-first century: state of the art and future directions. Ophthalmology 121(12), 2489–2500 (2014)

    Article  Google Scholar 

  22. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  23. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  24. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint arXiv:1609.04802 (2016)

  25. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015)

  26. Patton, N., et al.: Retinal image analysis: concepts,applications and potential. Prog. Retin. Eye Res. 25(1), 99–127 (2006). https://doi.org/10.1016/j.preteyeres.2005.07.001, https://linkinghub.elsevier.com/retrieve/pii/S1350946205000406, 00587

    Article  Google Scholar 

  27. Pu, Y., et al.: Variational autoencoder for deep learning of images, labels and captions. In: Advances in Neural Information Processing Systems, pp. 2352–2360 (2016)

    Google Scholar 

  28. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  29. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082 (2014)

  30. Theis, L., Oord, A.V.D., Bethge, M.: A note on the evaluation of generative models. arXiv preprint arXiv:1511.01844 (2015)

  31. Vertolli, M.O., Davies, J.: Image quality assessment techniques show improved training and evaluation of autoencoder generative adversarial networks. arXiv preprint arXiv:1708.02237 (2017)

  32. Yin, W., Fu, Y., Sigal, L., Xue, X.: Semi-latent GAN: learning to generate and modify facial images from attributes. arXiv preprint arXiv:1704.02166 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lasse Lensu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaplan, S., Lensu, L., Laaksonen, L., Uusitalo, H. (2020). Evaluation of Unconditioned Deep Generative Synthesis of Retinal Images. In: Blanc-Talon, J., Delmas, P., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2020. Lecture Notes in Computer Science(), vol 12002. Springer, Cham. https://doi.org/10.1007/978-3-030-40605-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40605-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40604-2

  • Online ISBN: 978-3-030-40605-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics