Skip to main content

Part of the book series: Society of Earth Scientists Series ((SESS))

  • 240 Accesses

Abstract

Indian shield consists five major Archean-Paleoproterozoic cratons, e.g. Dhrawar, Bastar, Singhbhum, Bundelkhand and Aravalli. Out of these, the Dharwar craton is one of the oldest and the largest, covering almost entire terrain of southern India. It can be divided into three geotectonic blocks; western and eastern Dharwar cratons and southern granulite terrain. All of these blocks exhibit distinct geologic, tectonostratigraphic, magmatic and geochronologic characters, which are well reflected in the regional geophysical fields. Gravity anomalies are largely negative, reaching as low as -120 mGal. Heat flow is also quite low over this craton compared to most of those cratons located in the north. In its western part, the lithosphere is quite thick (185 km). Numerous studies have now indicated that the present-day continental crust below this craton, may have evolved through arc magmatism and accretion, rifting, continent-continent collision, suturing and basaltic magma extrusion. Inner parts of this craton may have been rifting as late as in Gondwana period, challenging the wide held belief of cratonic instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Azeez KK, Veeraswamy K, Gupta AK, Babu N, Chandrapuri S, Harinarayana T (2015) The electrical resistivity structure of lithosphere across the Dharwar craton nucleus and Coorg block of south Indian shield: evidence of collision and modified and preserved lithosphere. J Geophys Res Solid Earth 120:6698–6721. https://doi.org/10.1002/2014JB011854

    Article  Google Scholar 

  • Agrawal PK, Pandey OP (2004) Unusual lithospheric structure and evolutionary pattern of the cratonic segments of the south Indian shield. Earth Planets Space 56:139–150

    Article  Google Scholar 

  • Agrawal PK, Pandey OP, Negi JG (1992) Madagascar: a continental fragment of the paleo–super–Dharwar craton of India. Geology 20:543–546

    Article  Google Scholar 

  • Anand M, Gibson SA, Subba Rao KV, Kelley SP, Dickin AP (2003) Early Proterozoic melt generation processes beneath the intra-cratonic Cuddapah basin, southern India. J Petrol 44:2139–2171

    Article  Google Scholar 

  • Anil Kumar, Padma Kumari VM, Dayal AM, Murthy DSN, Gopalan K (1993) Rb-Sr ages of Proterozoic kimberlites of India, evidence for contemporaneous emplacement. Precamb Res 62:227–237

    Google Scholar 

  • Anil Kumar, Gopalan K, Rao KRP, Nayak SS (2001) Rb-Sr ages of kimberlites and lamproites from Eastern Dharwar craton, south India. J Geol Soc India 58:135–142

    Google Scholar 

  • Anil Kumar, Parashuramulu V, Nagaraju E (2015) A 2082 Ma radiating dyke swarm in the Eastern Dharwar craton, southern India and its implications to Cuddapah basin formation. Precamb Res 266:490–505

    Google Scholar 

  • Babu RK, Raju SG (2012) Application of remote sensing for delineation of Uranium bearing Vempalle dolomites in and around Tummalapalle area, Cuddapah basin, India. Int J Geomatics Geosci 2:842–852

    Google Scholar 

  • Babu Rao V, Achutha Rao D, Rama Rao Ch, Sarma BSP, Bhaskara Rao DS, Veera Swamy K, Sarma MRL (1987) Some salient results of interpretation of aeromagnetic data over Cuddapah basin and adjoining terrain, south India. Geol Soc India Mem 6:295–312

    Google Scholar 

  • Balling N (1995) Heat flow and thermal structure of the lithosphere across the Baltic Shield and northern Tornquist zone. Tectonophysics 244:13–50

    Article  Google Scholar 

  • Barton PJ (1986) The relationship between seismic velocity and density in the continental crust a useful constraint? Geophys J R Astronom Soc 87:195–208

    Article  Google Scholar 

  • Behera L (2011) Crustal tomographic imaging and geodynamic implications toward south of Southern Granulite Terrain (SGT), India. Earth Planet Sci Lett 309:166–178

    Google Scholar 

  • Biswas SK (1999) A review on the evolution of rift basins in India during Gondwana with special reference to western Indian basins and their hydrocarbon prospects. PINSA 65:261–283

    Google Scholar 

  • Chalapathi Rao NV, Anand M, Dongre A, Osborne L (2010) Carbonate xenoliths hosted by the Mesoproterozoic Siddanpalli kimberlite cluster (eastern Dharwar craton): implications for the geodynamic evolution of southern India and its diamond and uranium metallogenesis. Int J Earth Sci 99:1791–1804

    Article  Google Scholar 

  • Chandrakala K, Pandey OP, Mall DM, Sarkar D (2010) Seismic signatures of a Proterozoic thermal plume below southwestern part of the Cuddapah basin, Dharwar craton, India. J Geol Soc India 76:565–572

    Article  Google Scholar 

  • Chandrakala K, Mall DM, Sarkar D, Pandey OP (2013) Seismic imaging of the Proterozoic Cuddapah basin, south India and regional geodynamics. Precamb Res 231:277–289

    Article  Google Scholar 

  • Chandrakala K, Pandey OP, Prasad ASSSRS, Sain K (2015) Seismic imaging across the Eastern Ghats Belt-Cuddapah basin collisional zone, southern Indian Shield and possible geodynamic implications. Precmb Res 271:56–64

    Article  Google Scholar 

  • Chandrakala K, Pandey OP, Sesha Sai VV, Vasanthi A, Satish Kumar K (2017) Seismically derived Gondwana and Proterozoic sediments east of Cuddapah basin, south Indian shield and its possible geotectonic implications. Pure Appl Geophys 174:2601–2619

    Article  Google Scholar 

  • Chapman DS, Pollack HN (1977) Regional geotherms and lithospheric thickness. Geology 5:265–268

    Article  Google Scholar 

  • Chetty TRK (2014) Deep crustal shear zones in the Eastern Ghats Mobile Belt, India: Gondwana correlations. J Indian Geophys Union 18:19–56

    Google Scholar 

  • Chetty TRK, Santosh M (2013) Proterozoic orogens in southern Peninsular India: contiguities and complexities. J Asian Earth Sci 78:39–53

    Article  Google Scholar 

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100:9761–9788

    Article  Google Scholar 

  • Collins AS, Pisarevsky SA (2005) Amalgamating eastern Gondwana: the evolution of the Circum-Indian orogens. Earth Sci Rev 71:229–270

    Article  Google Scholar 

  • Dasgupta S, Bose S, Das K (2013) Tectonic evolution of the Eastern Ghats Belt, India. Precamb Res 227:247–258

    Article  Google Scholar 

  • Dharma Rao CV, Reddy UVB (2009) Petrological and geochemical characterization of Proterozoic ophiolitic mélange, Nellore-Khammam schist belt, SE India. J Asian Earth Sci 36:261–276

    Article  Google Scholar 

  • Dharma Rao CV, Santosh M, Wu Y (2011) Mesoproterozoic ophiolite mélange from the SE periphery of Indian plate: U-Pb zircon ages and tectonic implications. Gondwana Res 19:384–401

    Article  Google Scholar 

  • Dobmeier CJ, Raith MM (2003) Crustal architecture and evolution of the Eastern Ghats Belt and adjacent regions of India. In: Yoshida M, Windley BF, Dasgupta S (eds) Proterozoic East Gondwana: supercontinent assembly and breakup, vol 206. Geol Soc Lond Spec Publ, 145–168

    Google Scholar 

  • Dobmeier C, Lutke S, Hammerschmidt K, Mezger K (2006) Emplacement and deformation of the Vinukonda meta-granite (Eastern Ghats, India)—implications for the geological evolution of peninsular India and for Rodinia reconstructions. Precamb Res 146:165–178

    Article  Google Scholar 

  • Dongre A, Chalapathi Rao NV, Kamde G (2008) Limestone xenoliths in Siddanpalli kimberlite, Gadwal granite-greenstone terrain, eastern Dharwar craton, southern India: remnant of Proterozoic platformal cover sequence of Bhima/Kurnool age? J Geol 116:184–191

    Google Scholar 

  • Durrheim RJ, Mooney WD (1991) Archean and Proterozoic crustal evolution: evidence from crustal seismology. Geology 19:606–609

    Article  Google Scholar 

  • Durrheim RJ, Mooney WD (1994) Evolution of the Precambrian lithosphere: seismological and geochemical constraints. J Geophys Res 99:15359–15374

    Article  Google Scholar 

  • Geosoft Oasis Montaj (2004) GM-SYS version 7.0 gravity and magnetic modeling software user guide. Northwest Geophysical Associates, Inc

    Google Scholar 

  • Gokarn SG, Gupta G, Rao CK (2004) Geoelectric structure of the Dharwar craton from magnetotelluric studies: Archean suture identified along the Chitradurga-Gadag schist belt. Geophys J Int 158:712–728

    Article  Google Scholar 

  • Grant FS (1983) Results of preliminary interpretation studies, report on ‘Visit to NGRI, Hyderabad, India’ Project IND/79/047. Sept–Oct, pp 5–17 (Restricted)

    Google Scholar 

  • GSI-NGRI (2006) Gravity anomaly map of India on 1:2 million scale. Geological Survey of India, Hyderabad and National Geophysical Research Institute, Hyderabad, India, Maps. pp 1–13

    Google Scholar 

  • Gupta S, Rai SS (2005) Structure and evolution of south Indian crust using teleseismic waveform modelling. Himalyan Geol 26:109–123

    Google Scholar 

  • Gupta ML, Rao GV (1970) Heat flow studies under upper mantle project, in: NGRI’s contribution to the upper mantle project. Bull National Geophys Res Inst 8(1):87–112

    Google Scholar 

  • Gupta ML, Sharma SR, Sundar A, Singh SB (1987) Geothermal studies in the Hyderabad granitic region and the crustal thermal structure of the southern Indian shield. Tectonophysics 140:257–264

    Article  Google Scholar 

  • Gupta ML, Sundar A, Sharma SR (1991) Heat flow and heat generation in the Archean Dharwar cratons and implications for the southern Indian shield geotherm and lithospheric thickness. Tectonophysics 194:107–122

    Article  Google Scholar 

  • Harinarayana T, Naganjaneyulu K, Manoj C, Patro BPK, Begum SK, Murthy DN, Rao M, Kumaraswamy, VTC, Virupakshi G (2003) Magnetotelluric investigations along Kuppam–Palani Geotransect, south India- 2-D modelling results. In: Ramakrishnan M (ed) Tectonics of Southern Granulite Terrain, Kuppam–Palani Geotransect. Geol. Soc. India Memoir. 50:107–124

    Google Scholar 

  • Harinarayana T, Naganjaneyulu K, Patro BPK (2006) Detection of a collision zone in south Indian shield region from magnetotelluric studies. Gondwana Res 10:48–56

    Article  Google Scholar 

  • Harish Kumar SB, Jayananda M, Kano T, Shadakshara Swamy N, Mahabaleswar B (2003) Late Archean juvenile magnetic accretion process in the eastern Dharwar craton: Kuppam—Karimangalam area. Mem Geol Soc Ind 50:375–408

    Google Scholar 

  • Heamann LA, Kjarsgaard BA, Creaser RA (2003) The timing of kimberlite magmatism in north America: implications for global kimberlite genesis and diamond exploration. Lithos 71:153–184

    Article  Google Scholar 

  • Henderson B, Collins AS, Payne J, Forbes C, Saha D (2014) Geologically constraining India in Columbia: the age, isotopic provenance and geochemistry of the protoliths of the Ongole Domain, Southern Eastern Ghats, India. Gondwana Res 26:888–906

    Article  Google Scholar 

  • Holland TH (1906) Classification of the Indian Strata. Trasn Min Metam Soc India, 1–17

    Google Scholar 

  • Jagadeesh S, Rai SS (2008) Thickness, composition, and evolution of the Indian Precambrian crust inferred from broadband seismological measurements. Precamb Res 162:4–15

    Article  Google Scholar 

  • Jayananda M, Kano T, Peucat JJ, Channabasappa S (2008) 3.35 Ga komatiite volcanism in the western Dharwar craton, southern India: constraints from Nd isotopes and whole-rock geochemistry. Precambrian Res 162:160–179

    Article  Google Scholar 

  • Jayananda M, Santosh M, Aadhiseshan KR (2018) Formation of Archean (3600–2500 Ma) continental crust in Dharwar craton, southern India. Earth Sci Rev 181:12–42

    Article  Google Scholar 

  • Julia J, Jagadeesh S, Rai SS, Owens TJ (2009) Deep crustal structure of the Indian shield from joint inversion of P wave receiver functions and Rayleigh wavegroup velocities: implications for Precambrian crustal evolution. J Geophys Res Solid Earth 114, B10313. http://dx.doi.org/10.1029/2008JB006261

  • Kaila KL, Bhatia SC (1981) Gravity study along Kavali-Udipi deep seismic sounding profile in the Indian peninsular shield: some inferences about origin of anorthosites and Eastern Ghat orogeny. Tectonophysics 79:129–143

    Article  Google Scholar 

  • Kaila KL, Tewari HC (1985) Structural trends in the Cuddapah basin from deep seismic soundings (DSS) and their tectonic implication. Tectonophysics 115:69–86

    Article  Google Scholar 

  • Kaila KL, Roy Chowdhury K, Reddy PR, Krishna VG, Narain Hari, Subbotin SI, Sollogub VB, Chekunov AV, Kharetchko GE, Lazarenko MA, Ilchenko TV (1979) Crustal structure along Kavali-Udipi profile in the Indian peninsular shield from deep seismic sounding. J Geol Soc India 20:307–333

    Google Scholar 

  • Kailasam LN (1976) Geophysical studies of the major sedimentary basins of the Indian craton, their deep structural features and evolution. Tectonophysics 36:225–245

    Article  Google Scholar 

  • Kiselev S, Vinnik L, Oreshin S, Gupta S, Rai SS, Singh A, Kumar MR, Mohan G (2008) Lithosphere of the Dharwar craton by joint inversion of P and S receiver functions. Geophys J Int 173:1106–1118

    Article  Google Scholar 

  • Konda S, Patro KP, Rao CK (2015) Geoelectric signatures of Palnad sub basin and Nallamalai Fold Belt, Cuddapah basin, India. J Geol Soc India 86:377–382

    Article  Google Scholar 

  • Krishna Brahmam N, Dutt NVBS (1985) Possible relationship between initiation of Papaghani basin and meteoritic impact. In: Workshop on Purana basins (middle to later Proterozoic) of Peninsular India, Hyderabad, 29–31 Dec, pp 48–49

    Google Scholar 

  • Krishna Brahmam N, Sharma JRK, Aravamadhu PS, Subba Rao DV (1986) Explanatory broucher on Bouguer gravity anomaly map (NGRI/GPH-6) of Cuddapah basin (India). NGRI, Hyderabad, India

    Google Scholar 

  • Kumar N, Singh AP, Gupta SB, Mishra DC (2004) Gravity signature, crustal architecture and collision tectonics of the Eastern Ghats Mobile Belt. J Indian Geophys Union 8:97–106

    Google Scholar 

  • Kumar P, Yuan X, Ravi Kumar M, Kind R, Li X, Chadha RK (2007) The rapid drift of the Indian tectonic plate. Nature 449:894–897

    Article  Google Scholar 

  • Kumar P, Ravi Kumar M, Srijayanthi G, Arora K, Srinagesh D, Chadha RK, Sen MK (2013) Imaging the lithosphere- asthenosphere boundary of the Indian plate using converted wave techniques. J Geophys Res Solid Earth 118:1–13. https://doi.org/10.1002/jgrb.50366

    Article  Google Scholar 

  • Kusham, Pratap A, Pradeep Naik B, Naganjaneyulu K (2018) Lithospheric architecture in the Archaean Dharwar craton, India: a magnetotelluric model. J Asian Earth Sci 163:43–53

    Google Scholar 

  • Liu L, Zoback MD (1997) Lithospheric strength and intraplate seismicity in the New Madrid seismic zone. Tectonics 16:585–595

    Article  Google Scholar 

  • Mall DM, Pandey OP, Chandrakala K, Reddy PR (2008) Imprints of a Proterozoic tectonothermal anomaly below the 1.1 Ga kimberlitic province of Southwest Cuddapah basin, Dharwar craton (Southern India). Geophys J Int 172:422–438

    Article  Google Scholar 

  • Mall DM, Chandrakala K, Kumar AS, Sarkar D (2012) Sub-crustal LVZ below Dharwar craton, India: an evidence for mantle metasomatism and tectonothermal activity in the Archean crust. Precambrian Res 208–211:161–173

    Article  Google Scholar 

  • Malleswari D, Veeraswamy K, Abdul Azeez KK, Gupta AK, Babu N, Patro PK, Harinarayana T (2019) Magnetotelluric investigation of lithospheric electrical structure beneath the Dharwar craton in south India: evidence for mantle suture and plume-continental interaction. Geosci Frontiers 10:1915–1930

    Article  Google Scholar 

  • Mallick K, Sharma KK (1999) A finite element method for computation of the regional gravity anomaly. Geophysics 64:461–469

    Article  Google Scholar 

  • Mallick K, Vasanthi AA, Sharma KK (2012) Bouguer gravity regional and residual separation—application to geology and environment. Springer, New York

    Book  Google Scholar 

  • Mallikarjuna RJ, Bhattacharji S, Rao MN, Hermes OD (1995) 40Ar–39Ar ages and geochemical characteristics of the dolerite dykes around Proterozoic Cuddapah basin, south India. Geol Soc India Mem 33:307–328

    Google Scholar 

  • Mandal B, Sen MK, Vijaya Rao V, Mann J (2014) Deep seismic image enhancement with the common reflection surface (CRS) stack method: evidence from the Aravalli-Delhi fold belt of northwestern India. Geophys J Int 196:902–917

    Article  Google Scholar 

  • Mandal B, Rao VV, Sarkar D, Bhaskar Rao YJ, Raju S, Karuppannan P, Sen MK (2018) Deep crustal seismic reflection images from the Dharwar craton, Southern India—evidence for the Neoarchean subduction. Geophys J Int 212:777–794

    Article  Google Scholar 

  • Manikyamba C, Kerrich R, Khanna TC, Keshav Krishna A, Satyanarayanan M (2008) Geochemical systematics of komatiite–tholeiite and adakitic-arc basalt associations: the role of a mantle plume and convergent margin in formation of the Sandur Super terrane, Dharwar craton, India. Lithos 106:155–172

    Article  Google Scholar 

  • Manikyamba C, Ganguly S, Saha A, Santosh M, Singh MR, Subba Rao DV (2014) Continental lithospheric evolution: constraints from the geochemistry of felsic volcanic rocks in the Dharwar craton, India. J Asian Earth Sci 95:65–80

    Article  Google Scholar 

  • Mareschal JC, Pinet C, Gariepy C, Jaupart C, Bienfait G, Dalla C, Coleta GD, Joliveta J, Lapointe R (1989) New heat flow density and radiogenic heat production data in the Canadian shield and the Quebec Appalachians. Can J Earth Sci 26:845–852

    Article  Google Scholar 

  • Naganjaneyulu K, Harinaryana T (2004) Deep crustal electrical signatures of Eastern Dharwar craton, India. Gondwana Res 7:951–960

    Article  Google Scholar 

  • Naidu GD, Manoj C, Patro PK, Sreedhar SV, Harinarayana T (2011) Deep electrical signatures across the Achankovil shear zone, Southern Granulite Terrain inferred from magnetotellurics. Gondwana Res 20:405–426

    Article  Google Scholar 

  • Naqvi SM, Rogers JJW (1987) Precambrian geology of India. Oxford University Press, New York, p 223

    Google Scholar 

  • Negi JG, Pandey OP, Agrawal PK (1986) Super mobility of hot Indian lithosphere. Tectonophysics 131:147–156

    Article  Google Scholar 

  • Negi JG, Agrawal PK, Pandey OP (1987) Large variation of Curie–depth and lithospheric thickness in Indian sub–continent and a case for magnetothermometry. Geophys Jour Roy Astr Soc 88:763–775

    Article  Google Scholar 

  • Newton RC, Perkins D (1982) Thermodynamic calibration of geobarometers based on the assemblages garnet-plagioclase-orthopyroxene (clinopyroxene)-quartz. Am Mineral 67:203–222

    Google Scholar 

  • NGRI (1975) Bouguer gravity anomaly map of India. National Geophysical Research Institute, Hyderabad, India

    Google Scholar 

  • NGRI (1985) Report on aeromagnetic survey over northern and southern part of Cuddapah basin and adjoining crystallines. Un published technical report no 85–238

    Google Scholar 

  • Nyblade AA, Pollack HN, Jones DL, Podmore F, Mushayandebvu M (1990) Terrestrial heat flow in east and southern Africa. J Geophys Res 95:17371–17384

    Article  Google Scholar 

  • Pandey OP (2016) Deep Scientific drilling results from Koyna and Killari earthquake regions reveal why Indian shield lithosphere is unusual, thin and warm. Geosci Frontiers 7:851–858

    Article  Google Scholar 

  • Pandey OP, Agrawal PK (1999) Lithospheric mantle deformation beneath the Indian cratons. J Geol 107:683–692

    Article  Google Scholar 

  • Pandey OP, Agrawal PK (2008) Lateral zonation around Archean Nucleus of the Dharwar craton, India: its deformation, segmentation and subsequent breakup. In: SK Tandon, AR Bhattacharya (eds) Advances in Earth Sciences, vol 1, pp 46–57

    Google Scholar 

  • Pandey OP, Vedanti N, Srivastava RP, Uma V (2013) Was Archean Dharwar craton ever stable? A seismic perspective. J Geol Soc India 81:774–780

    Article  Google Scholar 

  • Pandey OP, Srivastava RP, Vedanti N, Dutta S, Dimri VP (2014) Anomalous crustal and lithospheric mantle structure of southern part of the Vindhyan basin and its geodynamic implications. J Asian Earth Sci 91:316–328

    Article  Google Scholar 

  • Pandey OP, Tripathi P, Vedanti N, Srinivasa Sarma D (2016) Anomalous seismic velocity drop in iron and biotite rich amphibolite to granulite facies transitional rocks from Deccan volcanic covered 1993 Killari earthquake region, Maharastra (India): a case study. Pure Appl Geophys 173:2455–2471

    Google Scholar 

  • Pandey OP, Vedanti N, Srivastava RP (2017) Complexity in elucidating crustal thermal regime in geodynamically affected areas: a case study from the Deccan Large Igneous Province (western India). J Geol Soc India 90:289–300

    Article  Google Scholar 

  • Pandey OP, Chandrakala K, Vasanthi A, Satish Kumar K (2018) Seismically imaged shallow and deep crustal structure and potential field anomalies across the Eastern Dharwar craton, south Indian shield: possible geodynamical implications. J Asian Earth Sci 157:302–316

    Article  Google Scholar 

  • Parthasarathy G, Pandey OP, Sreedhar B, Sharma M, Tripathi P, Vedanti N (2019) First observation of microspherule from the infratrappean Gondwana sediments below Killari region of Deccan LIP, Maharashtra (India) and possible implications. Geosci Front 10:2281–2285

    Article  Google Scholar 

  • Polet J, Anderson DL (1995) Depth extent of cratons as inferred from tomographic studies. Geology 23:205–208

    Article  Google Scholar 

  • Prasad B, Phor L (2009) Palynostratigraphy of the subsurface Gondwana and post- Gondwana Mesozoics of the Cauvery basin, India. J Palaeontolog Soc India 54:41–71

    Google Scholar 

  • Qureshy MN (1981) Gravity anomalies, isostasy and crust-mantle relations in Deccan trap and contiguous regions, India. In: Subba Rao KV, Shukheshwala RN (eds) Deccan volcanism. Geol Soc India Mem 3:184–197

    Google Scholar 

  • Radhakrishnan BP (1987) Purana basins of Peninsular India. Mem Geol Soc India 6:518

    Google Scholar 

  • Radhakrishnan BP, Naqvi SM (1986) Precambrian continental crust of India and its evolution. J Geol 94:145–166

    Article  Google Scholar 

  • Rai SS, Priestley K, Suryaprakasam K, Srinagesh D, Gaur VK, Du Z (2003) Crustal shear velocity structure of the south India shield. J Geophys Res 108(B2):2088. https://doi.org/10.1029/2002JB001776

    Article  Google Scholar 

  • Rajaram M, Anand SP (2014) Aeromagnetic signatures of Precambrian shield and suture zones of Peninsular India. Geosci Front 5:3–15

    Article  Google Scholar 

  • Rajendra Prasad B, Behera L, Koteswara Rao P (2006) A tomographic image of upper crustal structure using P and S wave seismic refraction data in the Southern Granulite Terrain (SGT). India Geophys Res Lett 33:L14301. https://doi.org/10.1029/2006GL026307

    Article  Google Scholar 

  • Ramakrishnan M, Vaidyanadhan R (2008) Geology of India, vol 1. Geological Society of India, Bangalore, 556 pp

    Google Scholar 

  • Ramakrishnan M, Nanda JK, Augustine PE (1998) Geological evolution of the Proterozoic Eastern Ghats mobile belt. Geol Surv India Spec Publ 44:1–21

    Google Scholar 

  • Rao, RUM (1970) Heat flow studies in Kolar schist belt, Singhbhum thrust zone and Godavari valley, India. Ph.D. thesis, Andhra University, Waltair, India, 166 pp

    Google Scholar 

  • Rao RUM, Rao GV, Narain H (1976) Radioactive heat generation and heat flow in the Indian shield. Earth Planet Sci Lett 30:57–64

    Article  Google Scholar 

  • Rao RUM, Roy S, Srinivasan R (2003) Heat flow researches in India: results and perspectives. Mem Geol Soc India 53:347–391

    Google Scholar 

  • Ravi Kumar M, Saikia D, Singh A, Srinagesh D, Baidya PR, Dattatrayam RS (2013) Low shear velocities in the sub-lithospheric mantle beneath the Indian shield? J Geophys Res Solid Earth 118:1–14. https://doi.org/10.1002/jgrb.50114

    Article  Google Scholar 

  • Ray L, Senthil Kumar P, Reddy GK, Roy S, Rao GV, Srinivasan R, Rao RUM (2003) High mantle heat flow in a Precambrian granulite province: evidence from southern India. J Geophys Res 108(B2):2084. https://doi.org/10.1029/2001JB000688

    Article  Google Scholar 

  • Reddy PR, Chandrakala K, Sridhar AR (2000) Crustal velocity structure of the Dharwar craton, India. J Geol Soc India 55:381–386

    Google Scholar 

  • Reddy PR, Rajendra Prasad B, Vijaya Rao V, Sain K, Prasada Rao P, Khare P, Reddy MS (2003) Deep seismic reflection and refraction/wide-angle reflection studies along Kuppam–Palani transect in Southern Granulite Terrain of India. In: Ramakrishnan M (ed) Tectonics of Southern Granulite Terrain, Kuppam–Palani Geotransect. Geol Soc India Mem 50:79–106

    Google Scholar 

  • Reddy PR, Chandrakala K, Prasad ASSSRS, Rao ChR (2004) Lateral and vertical crustal velocity and density variations in the southwestern Cuddapah basin and adjoining eastern Dharwar craton. Curr Sci 87:1607–1614

    Google Scholar 

  • Riding R, Sharma M (1998) Late Paleoproterozoic (∼1800–1600 Ma) stromatolites, Cuddapah basin, southern India: cyanobacterial or other bacterial microfabrics? Precamb Res 92:21–35

    Article  Google Scholar 

  • Rogers JJW, Callahan EJ (1987) Radioactivity, heat flow and rifting of the Indian continental crust. J Geol 95:829–836

    Article  Google Scholar 

  • Rogers JJW, Santosh M (2002) Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Res 5:5–22

    Article  Google Scholar 

  • Roy S, Rao RUM (1999) Geothermal investigations in the 1993 Latur earthquake area, Deccan volcanic province, India. Tectonophysics. 306:237–252

    Google Scholar 

  • Roy S, Rao RUM (2000) Heat flow in the Indian Shield. J Geophys Res 105(B11):25587–25604

    Article  Google Scholar 

  • Roy S, Ray L, Senthil Kumar P, Reddy GK, Srinivasan R (2003) Heat flow and heat production in the Precambrian gneiss-granulite province of southern India. Mem Geol Soc India 50:177–191

    Google Scholar 

  • Roy S, Ray L, Bhattacharya A, Srinivasan R (2007) New heat flow data from deep boreholes in the greenstones-granite-gneiss and gneiss-granulite provinces of south india. DCS-DST News Lett. 17(1):8–11

    Google Scholar 

  • Roy S, Ray L, Bhattacharya A, Srinivasan R (2008) Heat flow and crustal thermal structure in the late Archean Closepet granite batholith, south India. Int J Earth Sci 97:245–256

    Article  Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust, treatise on geochemistry, vol 3. Elsevier, New York, pp 1–64

    Google Scholar 

  • Saha D (2002) Multi stage deformation in the Nallamalai fold belt, Cuddapah basin, south India—implications for Mesoproterozoic tectonism along the southeastern margin of India. Gondwana Res 5:701–719

    Article  Google Scholar 

  • Saha D (2011) Dismembered ophiolites in Paleoproterozoic nappe complexes of Kandra and Gurramkonda, south India. J Asian Earth Sci 42:158–175

    Google Scholar 

  • Saha D, Tripathy V (2012) Palaeoproterozoic sedimentation in the Cuddapah basin, south India and regional tectonics–a review. In: Mazumder R, Saha D (eds) Paleoproterozoic of India, vol 365. Geological Society of London Special Publication, London, pp 159–182

    Google Scholar 

  • Saha D, Chakraborti S, Tripathy V (2010) Intracontinental thrusts and inclined transpression along eastern margin of the East Dharwar craton, India. J Geol Soc India 75:323–337

    Article  Google Scholar 

  • Saha D, Sain A, Nandi P, Mazumder R, Kar R (2015) Tectonostratigraphic evolution of the Nellore schist belt, southern India, since the Neoarchaean. Geol Soc Lond Mem 43:269–282

    Article  Google Scholar 

  • Saikia U, Das R, Rai SS (2017) Possible magmatic underplating beneath the west coast of India and adjoining Dharwar craton: imprint from Archean crustal evolution to breakup of India and Madagascar. Earth Planet Sci Lett 462:1–14

    Article  Google Scholar 

  • Sarkar D, Chandrakala K, Padmavathi Devi P, Sridhar AR, Sain K, Reddy PR (2001) Crustal velocity structure of western Dharwar craton, south India. J Geodynamics 31:227–241

    Article  Google Scholar 

  • Sass JH, Lachenbruch AH (1979) Thermal regime of the Australian continental crust. In: McElhinny MW (ed) The earth: its origin, structure and evolution. Academic, San Diego, Calif, pp 301–351

    Google Scholar 

  • Saunders AD, Jones SN, Morgan IN, Pierce KM et al (2007) Regional uplift associated with continental large igneous provinces: the roles of mantle plumes and the lithosphere. Chem Geol 241:282–318

    Article  Google Scholar 

  • Sengupta P, Raith MM, Kooijman E, Talukdar M, Choudhury P, Sanyal S, Mezger K, Mukhopadhyay D (2015) Provenance, timing of sedimentation and metamorphism of metasedimentary rock suites from the Southern Granulite Terrane, India. Geol Soc Lond Mem 43:297–308. https://doi.org/10.1144/M43.20

  • Sharma RS (2009) Cratons and fold belts of India. Springer, New York, p 304

    Google Scholar 

  • Sharma SR, Sunder A, Rao VK, Ramana DV (1991) Surface heat flow and Pn velocity distribution in peninsular India. J Geodyn 13:67–76

    Article  Google Scholar 

  • Singh AP (1998) 3-D structure and geodynamic evolution of accreted igneous layer in the Narmada-Tapti region (India). J Geodyn 25:129–141

    Article  Google Scholar 

  • Singh AP (1999) The deep crustal accretion beneath the Laxmi Ridge in the northeastern Arabian sea: the plume model again. J Geodyn 27:611–626

    Article  Google Scholar 

  • Singh AP, Mall DM (1998) Crustal accretion beneath the Koyna coastal region (India) and late Cretaceous geodynamics. Tectonophysics 290:285–297

    Article  Google Scholar 

  • Singh AP, Meissner R (1995) Crustal configuration of the Narmada–Tapti region (India) from gravity studies. J Geodyn 20:111–127

    Article  Google Scholar 

  • Singh AP, Mishra DC (2002) Tectonosedimentary evolution of Cuddapah basin and Eastern Ghats mobile belt (India) as Proterozoic collision: gravity, seismic and geodynamic constraints. J Geodyn 33:249–267

    Article  Google Scholar 

  • Singh AP, Mishra DC, Gupta SB, Rao MRKP (2004) Crustal structure and domain tectonics of the Dharwar craton (India): insight from new gravity data. J Asian Earth Sci 23:141–152

    Article  Google Scholar 

  • Srikantappa C, Venugopal L, Devaraju J, Basavalingu B (1994) P–T conditions of metamorphism and fluid inclusion characteristics of the Coorg granulites, Karnataka. J Geol Soc India 44:495–504

    Google Scholar 

  • Srinagesh D, Rai SS (1996) Teleseismic tomographic evidence for contrasting crust and upper mantle in south Indian Archean terrains. Phys Earth Planet Int 97:27–41

    Article  Google Scholar 

  • Stagg HMJ (1985) The structure and origin of Prydz Bay and Mac Robertson shelf, East Antarctica. Tectonophysics 114:315–340

    Article  Google Scholar 

  • Sunder Raju PV, Eriksson PG, Catuneanu O, Sarkar S, Banerjee S (2014) A review of the inferred geodynamic evolution of the Dharwar craton over the ca. 3.5–2.5 Ga period, and possible implications for global tectonics. Can J Earth Sci 51:312–325

    Article  Google Scholar 

  • Venkatakrishnan R, Dotiwala FE (1987) The Cuddapah salient: a tectonic model for the Cuddapah basin, India, based on Landsat image interpretation. Tectonophysics 136:237–253

    Article  Google Scholar 

  • Verma RK (1985) Gravity field, seismicity and tectonics of the Indian peninsula and the Himalayas. D. Reidel Publishing Company, Dordrecht, Bostan, Lancaster, p 213

    Book  Google Scholar 

  • Verma RK, Gupta ML (1975) Present status of heat flow studies in India. Geophys Res Bull 13:247–255

    Google Scholar 

  • Verma RK, Rao RUM, Gupta ML, Rao GV, Hamza VM (1969) Terrestrial heat flow in various parts of india. Bull Volcanologique 33:69–88

    Article  Google Scholar 

  • Vijaya Kumar K, Ernst WG, Leelanandam C, Wooden JL, Grove MJ (2010) First Paleoproterozoic ophiolite from Gondwana: geochronologic–geochemical documentation of ancient oceanic crust from Kandra, SE India. Tectonophysics 487:22–32

    Article  Google Scholar 

  • Vijaya Rao V, Rajendra Prasad B (2006) Structure and evolution of the Cauvery Shear Zone system, Southern Granulite Terrain, India: evidence from deep seismic and other geophysical studies. Gondwana Res 10:29–40

    Article  Google Scholar 

  • Vijaya Rao V, Rajendra Prasad B, Reddy PR, Tewari HC (2000) Evolution of Proterozoic Aravalli Delhi Fold Belt in the northwestern Indian Shield from seismic studies. Tectonophysics 327:109–130

    Article  Google Scholar 

  • Vijaya Rao V, Sain K, Reddy PR, Mooney WD (2006) Crustal structure and tectonics of the northern part of the Southern Granulite Terrane, India. Earth Planet Sci Lett 251:90–103

    Article  Google Scholar 

  • Vijaya Rao V, Sain K, Rajendra Prasad B (2007) Dipping Moho in the southern part of eastern Dharwar craton, India, as revealed by the coincident seismic reflection and refraction study. Current Sci 93:330–336

    Google Scholar 

  • Vijaya Rao V, Murty ASN, Sarkar D, Bhaskar Rao YJ, Khare P, Prasad ASSSRS, Sridher V, Raju S, Rao GS, Karuppannan P, Kumar NP, Sen MK (2015) Crustal velocity structure of the Neoarchean convergence zone between the eastern and western blocks of Dharwar craton, India from seismic wide-angle studies. Precambrian Res. 266:282–295

    Google Scholar 

  • White R, McKenzie D (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729

    Article  Google Scholar 

  • Yellappa T, Rao JM (2018) Geochemical characteristics of Proterozoic granite magmatism from Southern Granulite Terrain, India: implications for Gondwana. J Earth Syst Sci 127:22. https://doi.org/10.1007/s12040-018-0923-6

  • Yoshida M, Jacobs J, Santosh M, Rajesh HM (2003) Role of Pan-African events in the Circum-East Antarctic Orogen of East Gondwana: a critical overview. In: Yoshida M, Windley BF, Dasgupta S (eds) Proterozoic East Gondwana: upper continent assembly and breakup, vol. 206. Geological Society London Special Publications, London, pp 57–75

    Google Scholar 

  • Zelt CA (1999) Modeling strategies and model assessment for wide-angle seismic traveltime data. Geophys J Int 139:183–204

    Article  Google Scholar 

  • Zelt CA, Smith RB (1992) Seismic travel time inversion for 2-D crustal velocity structure. Geophys J Int 108:16–34

    Article  Google Scholar 

  • Zhao GC, Sun M, Wilde SA, Li S (2004) A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth Sci Rev 67:91–123

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, O.P. (2020). Dharwar Craton. In: Geodynamic Evolution of the Indian Shield: Geophysical Aspects. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-030-40597-7_2

Download citation

Publish with us

Policies and ethics