Microsystems Material Properties

  • Michael Huff
Part of the Microsystems and Nanosystems book series (MICRONANO)


Chapter  6 reviews some of the important properties of the most commonly used materials in microsystems manufacturing. It is explained that the material properties are dependent on the processing conditions, and since many process sequences are customized, there is often insufficient knowledge of the properties during development. Most attention is given to two specific material properties, namely, Young’s modulus and residual stress, due to the fact that these usually have an important impact on the behavior of MEMS devices and the fact that these properties can vary quite significantly depending on the processing conditions. The use of test structures, including both mechanical and electrical, for measuring various material properties is explained. A review of the material properties for some of the most commonly used materials in microsystems manufacturing is then provided including semiconductors; dielectrics; and metals. The purpose of providing information about reported values of Young’s modulus and residual stress in deposited thin-film layers is to give an appreciation of the amount that these properties can vary with processing conditions and some guidance about the ranges that these properties may span.


Material properties Residual stress Young’s modulus Test structures Stress gradients Nano-indentation CV measurements van der Pauw Hall coefficient Resistivity Thin-film material properties Electrochemically deposited material properties 


  1. 1.
    R. Ghodsi, P. Lin (eds.), MEMS Materials and Process Handbook (Springer, New York, 2011)Google Scholar
  2. 2.
    E.P. Popov, Introduction to the Mechanics of Solids (Prentice-Hall, Englewood Cliffs, 1968)Google Scholar
  3. 3.
    M. Ohring, The Materials Science of Thin Films (Academic Press, London, 1992)zbMATHGoogle Scholar
  4. 4.
    M. Huff, A thermally isolated microstructure suitable for gas sensing applications, S.M. Thesis, MIT, 1988Google Scholar
  5. 5.
    S. Senturia, Can we design microrobotic devices without knowing the mechanical properties of the materials? Micro robots and teleoperators workshop, Hyannis, 1987Google Scholar
  6. 6.
    W.C.K. Tang, Ph.D. thesis, University of California at Berkeley, 1990Google Scholar
  7. 7.
    L. Lin, Ph.D. thesis, University of California at Berkeley, 1993Google Scholar
  8. 8.
    H. Guckel, T. Randazzo, D.W. Burns, A simple technique for the determination of mechanical strain in thin films with application to polysilicon. J. Appl. Phys. 57, 1671 (1985)CrossRefGoogle Scholar
  9. 9.
    W.H. Chu, M. Mehregany, X. Ning, P. Pirouz, Measurement of residual stress-induced bending moment of p+ silicon films. Mater. Res. Soc. Symp. 239, 169 (1992)CrossRefGoogle Scholar
  10. 10.
    W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004)CrossRefGoogle Scholar
  11. 11.
    S. Wolf, R.N. Tauber, Silicon Processing for the VLSI Era, Volume 1-Process Technology (Lattice Press, Sunset Beach, 1986)Google Scholar
  12. 12.
    E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, New York, 2002)Google Scholar
  13. 13.
    MEMSNet Material Property Information, See: Accessed 24 Sept. 2018
  14. 14.
    J. Leconte, F. Iker, S. Jorez, N. Andre, J. Proost, T. Pardoen, D. Flandre, J.P. Raskin, Thin films stress extraction using micromachined structures and wafer curvature measurements. Microelectron. Eng. 76, 219–226 (2004)CrossRefGoogle Scholar
  15. 15.
    J. Yang, J. Gaspar, O. Paul, Fracture properties of LPCVD silicon nitride and thermally grown silicon oxide thin films from the load-deflection of long Si3N4 and SiO2/Si3N4 diaphragms. J. Microelectromech. Syst. 17, 1120–1134 (2008)CrossRefGoogle Scholar
  16. 16.
    T. Kamins, Polycrystalline Silicon for Integrated Circuits and Displays, 2nd edn. (Kluwer, Boston, 1998)CrossRefGoogle Scholar
  17. 17.
    G. Fresquet, C. Azzaro, J.P. Couderc, Analysis and modeling of in situ boron-doped polysilicon deposition by LPCVD. J. Electrochem. Soc. 142, 538 (1995)CrossRefGoogle Scholar
  18. 18.
    M. Biebl, G.T. Mulhern, R.T. Howe, In situ phosphorus-doped polysilicon for integrated MEMS, technical digest, in 8th International Conference on Solid-State Sensors and Actuators, Eurosensors IX, Stockholm, Sweden, pp. 198–201, 1995Google Scholar
  19. 19.
    J.G.M. Mulder, P. Eppenga, M. Hendriks, J.E. Tong, An industrial LPCVD process for in situ phosphorus-doped polysilicon. J. Electrochem. Soc. 137, 273 (1990)CrossRefGoogle Scholar
  20. 20.
    S. Bouwstra, E.L. de Weerd, M.C. Elwenspoek, In situ phosphorus-doped polysilicon for excitation and detection in micromechanical resonators. Sens. Actuators A 24, 227–235 (1990)CrossRefGoogle Scholar
  21. 21.
    R.C. Anderson, R.S. Muller, C.W. Tobias, Porous polycrystalline silicon: A new material for MEMS. J. Microelectromech. Syst. 3, 10–18 (1994)CrossRefGoogle Scholar
  22. 22.
    L. Elbrecht, R. Catanescu, J. Zacheja, J. Binder, Highly phosphorus-doped polysilicon films with low tensile stress for surface micromachining using POCl3 diffusion doping. Sens. Actuators A 61, 374–378 (1997)CrossRefGoogle Scholar
  23. 23.
    J.J. McMahon, J.M. Melzak, C.A. Zorman, J. Chung, M. Mehregany, Deposition and characterization of in-situ boron doped polycrystalline silicon films for microelectromechanical systems applications. Mater. Res. Symp. Proc. 605, 31–36 (2000)CrossRefGoogle Scholar
  24. 24.
    L. Chen, J. Miao, L. Guo, R. Lin, Control of stress in highly doped polysilicon multi-layer diaphragm structure. Surf. Coat. Technol. 141, 96–102 (2001)CrossRefGoogle Scholar
  25. 25.
    Y.B. Gianchandani, M. Shinn, K. Najafi, Impact of high-thermal budget anneals on polysilicon as a micromechanical material. J. Microelectromech. Syst. 7, 102–105 (1998)CrossRefGoogle Scholar
  26. 26.
    J. Yang, H. Kahn, A.Q. He, S.M. Phillips, A.H. Heuer, A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: The multipoly process. J. Microelectromech. Syst. 9, 485–494 (2000)CrossRefGoogle Scholar
  27. 27.
    G.M. Dougherty, A.P. Pisano, T.D. Sands, Processing and morphology of permeable polycrystalline silicon thin films. J. Mater. Res. 17, 2235–2242 (2002)CrossRefGoogle Scholar
  28. 28.
    G.M. Dougherty, T.D. Sands, A.P. Pisano, Microfabrication using one-step LPCVD porous polysilicon films. J. Microelectromech. Syst. 12, 418–424 (2003)CrossRefGoogle Scholar
  29. 29.
    D. Maier-Schneider, J. Maibach, E. Obermeier, D. Schneider, Variations in Young’s modulus and intrinsic stress of LPCVD-polysilicon due to high-temperature annealing. J. Micromech. Microeng. 5, 121–124 (1995)CrossRefGoogle Scholar
  30. 30.
    O. Tabata, K. Kawahata, S. Sugiyama, I. Igarashi, Mechanical property measurements of thin films using load-deflection of composite rectangular membrane, in Proceedings of Micro Electro Mechanical Systems, Salt Lake City, pp. 152–156, 1989Google Scholar
  31. 31.
    H. Guckel, T. Randazzo, D.W. Burns, A simple technique for the determination of mechanical strain in thin films with application to polysilicon. J. Appl. Phys. 57, 1671–1675 (1983)CrossRefGoogle Scholar
  32. 32.
    R.T. Howe, R.S. Muller, Stress in polysilicon and amorphous silicon thin films. J. Appl. Phys. 54, 4674–4675 (1983)CrossRefGoogle Scholar
  33. 33.
    X. Zhang, T.Y. Zhang, M. Wong, Y. Zohar, Rapid thermal annealing of polysilicon thin films. J. Microelectromech. Syst. 7, 356–364 (1998)CrossRefGoogle Scholar
  34. 34.
    M. Biebl, H. von Philipsborn, Fracture strength of doped and undoped polysilicon, technical digest, in 8th International Conference on Solid-State Sensors and Actuators, Eurosensors IX, Stockholm, Sweden, pp. 72–75, 1995Google Scholar
  35. 35.
    H. Kahn, N. Tayebi, R. Ballarini, R.L. Mullen, A.H. Heuer, Fracture toughness of polysilicon MEMS devices. Sens. Actuators A 82, 274–280 (2000)CrossRefGoogle Scholar
  36. 36.
    J.A. Walker, K.J. Gabriel, M. Mehregany, Mechanical integrity of polysilicon films exposed to hydrofluoric acid solutions. J. Electron. Mater. 20, 665–670 (1991)CrossRefGoogle Scholar
  37. 37.
    F. Ericson, S. Greek, J. Soderkvist, J. Schweitz, High sensitive internal film stress measurement by an improved micromachined indicator structure, technical digest, in 8th International Conference on Solid-State Sensors and Actuators, Eurosensors IX, Stockholm, Sweden, pp. 84–87, 1995Google Scholar
  38. 38.
    M.A. Benitez, L. Fonseca, J. Esteve, M.S. Benrakkad, J.R. Morante, J. Samitier, J.A. Schweitz, Stress-profile characterization and test-structure analysis of single and double ion-implanted LPCVD polycrystalline silicon. Sens. Actuators A 54, 718–723 (1996)CrossRefGoogle Scholar
  39. 39.
    H. Guckel, D.W. Burns, H.A.C. Tilmans, D.W. DeRoo, C.R. Rutigliano, Mechanical properties of fine grained polysilicon-the repeatability issue, technical digest, Solid-State Sensor Actuator Workshop, Hilton Head, pp. 96–99, 1988Google Scholar
  40. 40.
    J. Koskinen, J.E. Steinwall, R. Soave, H.H. Johnson, Microtensile testing of free-standing polysilicon fibers of various grain sizes. J. Micromech. Microeng. 3, 13–17 (1993)CrossRefGoogle Scholar
  41. 41.
    D. Maier-Schneider, A. Kprll, S.B. Holm, E. Obermeier, Elastic properties and microstructure of LPCVD polysilicon films. J. Micromech. Microeng. 6, 436–446 (1996)CrossRefGoogle Scholar
  42. 42.
    Y. Shioya, M. Mamoru, Comparison of phosphosilicate glass films deposited by three different chemical vapor deposition methods. J. Electrochem. Soc. 133, 1943–1950 (1986)CrossRefGoogle Scholar
  43. 43.
    R.M. Levin, A.C. Adams, Low pressure deposition of phosphosilicate glass films. J. Electrochem. Soc. 129, 1588–1592 (1982)CrossRefGoogle Scholar
  44. 44.
    S.K. Ghandhi, VLSI Fabrication Principles – Silicon and Gallium Arsenide (Wiley, New York, 1983)Google Scholar
  45. 45.
    J. Yang, O. Paul, Fracture properties of LPCVD silicon nitride thin films from the load deflection of long membranes. Sens. Actuators A 97–98, 520–526 (2002)CrossRefGoogle Scholar
  46. 46.
    M. Sekimoto, H. Yoshihara, T. Ohkubo, Silicon nitride single-layer x-ray mask. J. Vac. Sci. Technol. 21, 1017–1021 (1982)CrossRefGoogle Scholar
  47. 47.
    J.G.E. Gardeniers, H.A.C. Tilmans, C.C.G. Visser, LPCVD silicon-rich silicon nitride films for applications in micromechanics studied with statistical experimental design. J. Vac. Sci. Technol. A 14, 2879–2892 (1996)CrossRefGoogle Scholar
  48. 48.
    P. Temple-Boyer, C. Rossi, E. Saint-Etienne, E. Scheid, Residual stress in low pressure chemical vapor deposition SiNx films deposited from silane and ammonia. J. Vac. Sci. Technol. A 16, 2003–2007 (1998)CrossRefGoogle Scholar
  49. 49.
    C. Mastrangelo, Y.-C. Tai, R. Muller, Thermophysical properties of low-residual stress, silicon-rich, LPCVD silicon nitride films. Sens. Actuators 856–860, A21–A23 (1990)Google Scholar
  50. 50.
    P.P. Tsai, I.-C. Chen, C.J. Ho, Ultralow power carbon monoxide microsensor by micromachining techniques. Sens. Actuators B 76, 380–387 (2001)CrossRefGoogle Scholar
  51. 51.
    P.J. French, P.M. Sarro, R. Mallee, E.J.M. Fakkeldij, R.F. Wolffenbuttel, Optimization of a low-stress silicon nitride process for surface micromachining applications. Sens. Actuators A 58, 149–157 (1997)CrossRefGoogle Scholar
  52. 52.
    S. Hong, T.P. Weihs, J.C. Bravman, W.D. Nix, Measuring stiffness and residual stresses of silicon nitride thin films. J. Electron. Mater. 19, 903–909 (1990)CrossRefGoogle Scholar
  53. 53.
    A. Kaushik, H. Kahn, A.H. Heuer, Wafer-level mechanical characterization of silicon nitride MEMS. J. Microelectromech. Syst. 14, 359–367 (2005)CrossRefGoogle Scholar
  54. 54.
    E.I. Bromley, J.N. Randall, D.C. Flanders, R.W. Mountain, A technique for the determination of stress in thin films. J. Vac. Sci. Technol. B 1, 1364–1366 (1983)CrossRefGoogle Scholar
  55. 55.
    J.M. Olson, Analysis of LPCVD process conditions for the deposition of low stress silicon nitride. Part 1: Preliminary LPCVD experiments. Mater. Sci. Semicond. Process. 5, 51–60 (2002)CrossRefGoogle Scholar
  56. 56.
    T.Y. Zhang, Y.J. Su, C.F. Qian, M.H. Zhao, L.Q. Chen, Microbridge testing of silicon nitride thin films deposited on silicon wafers. Acta Mater. 48, 2843–2857 (2000)CrossRefGoogle Scholar
  57. 57.
    Y. Ren, D.C.C. Lam, Characterization of elastic behaviors of silicon nitride films with varying thicknesses. Mater. Sci. Eng. A 467, 93–96 (2007)CrossRefGoogle Scholar
  58. 58.
    B.C.S. Chou, J.S. Shie, C.N. Chen, Fabrication of low stress dielectric thin film for microsensor applications. IEEE Electron Device Lett. 18, 599–601 (1997)CrossRefGoogle Scholar
  59. 59.
    L.S. Fan, R.T. Howe, R.S. Muller, Fracture toughness of brittle thin films. Sens. Actuators 872–874, A21–A23 (1990)Google Scholar
  60. 60.
    X. Zhang, K.-S. Chen, R. Ghodssi, A.A. Ayon, S.M. Spearing, Residual stress and fracture in thick tetraethylorthosilicate (TEOS) and silane-based PECVD oxide films. Sens. Actuators A 91, 373–380 (2001)CrossRefGoogle Scholar
  61. 61.
    B.A. Walmsley, Y.L. Liu, X.Z. Hu, M.B. Bush, J.M. Dell, L. Faraone, Poisson’s ratio of low-temperature PECVD silicon nitride thin films. J. Microelectromech. Syst. 16, 622–627 (2007)CrossRefGoogle Scholar
  62. 62.
    M. Martyniuk, J. Antoszewski, C.A. Musca, J.M. Dell, L. Faraone, Dielectric thin films for MEMS-based optical sensors. Microelectron. Reliab. 47, 733–738 (2007)CrossRefGoogle Scholar
  63. 63.
    H. Huang, K.J. Winchester, A. Suvorova, B.R. Lawne, Y. Liud, X.Z. Hud, J.M. Dell, L. Faraone, Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films. Mater. Sci. Eng. A 435–436, 453–459 (2006)CrossRefGoogle Scholar
  64. 64.
    W. Zhou, J. Yang, Y. Li, A. Ji, F. Yang, Y. Yu, Bulge testing and fracture properties of plasma-enhanced chemical vapor deposited silicon nitride thin films. Thin Solid Films 517, 1989–1994 (2009)CrossRefGoogle Scholar
  65. 65.
    J. Gaspar, T. Adrega, V. Chu, J.P. Conde, Thin-film paddle microresonators with high quality factors fabricated at temperatures below 110°C, in Proceedings of the 18th International Conference on Microelectromechanical Systems, Miami, pp. 125–128, 2005Google Scholar
  66. 66.
    S. Chang, S. Sivoththaman, Development of a low temperature MEMS process with a PECVD amorphous silicon structural layer. J. Micromech. Microeng. 16, 1307 1313 (2006)Google Scholar
  67. 67.
    S. Chang, W. Eaton, J. Fulmer, C. Gonzalez, B. Underwood, Micromechanical structures in amorphous silicon, technical digest, in International Conference on Solid State Sensors and Actuators, San Francisco, pp. 751–754, 1991Google Scholar
  68. 68.
    S.B. Patil, V. Chu, J.P. Conde, Surface micromachining of a thin film microresonator using dry decomposition of a polymer sacrificial layer. J. Vac. Sci. Technol. B 25, 455–458 (2007)CrossRefGoogle Scholar
  69. 69.
    S. Chang, S. Sivoththaman, A tunable RFMEMS inductor on silicon incorporating an amorphous silicon bimorph in a low-temperature process. IEEE Electron Device Lett. 27, 905–907 (2006)CrossRefGoogle Scholar
  70. 70.
    P. Alpuim, V. Chu, J.P. Conde, Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition. J. Appl. Phys. 86, 3812–3821 (1999)CrossRefGoogle Scholar
  71. 71.
    C.-K. Chung, M.-Q. Tsai, P.-H. Tsai, C. Lee, Fabrication and characterization of amorphous Si films by PECVD for MEMS. J. Micromech. Microeng. 15, 136–142 (2005)CrossRefGoogle Scholar
  72. 72.
    D.W. Hoffman, J.A. Thornton, J. Vac. Sci. Technol. 20, 355 (1982)CrossRefGoogle Scholar
  73. 73.
    T. Abe, M.L. Reed, Low strain sputtered polysilicon for micromechanical structures, in Proceedings of the 9th International Workshop on Micro Electro Mechanical Systems, San Diego, pp. 258–262, 1996Google Scholar
  74. 74.
    P. Pal, S. Chandra, RF sputtered silicon for MEMS. J. Micromech. Microeng. 15, 1536–1546 (2005)CrossRefGoogle Scholar
  75. 75.
    K.A. Honer, G.T.A. Kovacs, Integration of sputtered silicon microstructures with prefabricated CMOS circuitry. Sens. Actuators A 91, 392–403 (2001)CrossRefGoogle Scholar
  76. 76.
    J.K. Luo, M. Pritschow, A.J. Flewitt, S.M. Spearing, N.A. Fleck, W.I. Milne, Effects of process conditions on properties of electroplated Ni thin films for microsystem applications. J. Electrochem. Soc. 153(10), D155–D161 (2006)CrossRefGoogle Scholar
  77. 77.
    A.A. Volinsky, M. Hauschildt, J.B. Vella, N.V. Edwards, R. Gregory, W.W. Gerberich, Residual stress and microstructure of electroplated Cu films on different barrier films. Mater. Res. Soc. Symp. 695., Materials Research Soc., L1.11.1 (2002)CrossRefGoogle Scholar
  78. 78.
    Y. Xiang, X. Chen, J.J. Vlassak, The mechanical properties of electroplated Cu thin films measured by means of the bulge test technique. Mater. Res. Soc. Symp. Proc. 695., Materials Research Soc., L4.9.1 (2002)CrossRefGoogle Scholar
  79. 79.
    P.H. Lawyer, C.H. Fields, Film stress versus plating rate for pulse-plated gold, HRL Laboratories Report, 2001Google Scholar
  80. 80.
    S.H. Pu, A.S. Holmes, E.M. Yeatman, Stress in electroplated gold on silicon substrates and its dependence on cathode agitation. Microelectron. Eng. 112, 21 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Michael Huff
    • 1
  1. 1.Corporation for National Research InitiativesMEMS & Nanotechnology ExchangeRestonUSA

Personalised recommendations