Metrology for Microsystems Manufacturing

  • Michael Huff
Part of the Microsystems and Nanosystems book series (MICRONANO)


Microsystems fabrication utilizes a number of metrology techniques during development and manufacturing that are reviewed in Chap. 5. These techniques are used in development after processing steps are performed (reviewed in Chaps. 3 and 4) to find and diagnose problems that may be present. In manufacturing, metrology is employed to maintain quality control and thereby increase production yields. Metrology also enables the process engineers to monitor the status of the processing equipment used in production. There are a wide variety of metrology tools that are available, including inspection of the devices during and after fabrication; measurement of the dimensions of various important elements of the microsystems; and chemical analysis of materials used in fabrication. Some of the basic metrology techniques that have been developed for the IC industry are discussed, followed by a review of several more specialized metrology techniques specific for MEMS fabrication. Guidance as the accuracy of each of the metrology methods is given in Tables 5.2 through 5.5 providing a quick look-up summary of these metrology methods along with their resolution, precision, and accuracy.


Metrology Microscopy SEM Interferometry Ellipsometry Stylus profilometry Four point probe Stress measurement Particle analysis Optical profilometry Wafer bonding inspection FIB STM AFM EDXS TEM 


  1. 1.
    S. Wolf, R.N. Tauber, Silicon Processing for the VLSI Era, Volume 1: Process Technology (Lattice Press, Sunset Beach, 1986)Google Scholar
  2. 2.
    K.R. Spring, M.W. Davidson, Introduction to fluorescence microscopy, in Nikon Microscopy U (Retrieved 2017)Google Scholar
  3. 3.
  4. 4.
    S.E. Mechels, M. Young, Scanning confocal microscope for accurate dimensional measurement, in Proceedings SPIE/IS&T, symposium on electronic imaging: Science and technology, vol. 1660 (1992)Google Scholar
  5. 5.
  6. 6.
    A.D. Kammers, S. Daly, Digital image correlation under scanning electron microscopy: Methodology and validation. Exp. Mech. 53(9), 1743 (2013)CrossRefGoogle Scholar
  7. 7.
    A.C. Diebold, Handbook of Silicon Semiconductor Metrology (Marcel Dekker, New York, 2001)CrossRefGoogle Scholar
  8. 8.
    R.N. Yamaguchi, H. Kawada, CD-SEM Technologies for 65-nm Process Node, Hitachi Technical Note (2005). See: Scholar
  9. 9.
    E. Langereis, S.B.S. Heil, H.C.M. Knoops, W. Keuning, M.C.M. van de Danden, In situ spectroscopic ellipsometry for atomic layer deposition. Presented at the 52nd SVC technical conference, optical coatings session, Santa Clara, 2009Google Scholar
  10. 10.
  11. 11.
    L. Chen, J. Miao, L. Guo, R. Lin, Control of stress in highly doped polysilicon multi-layer diaphragm structure. Surf. Coat. Technol. 141, 96–102 (2001)CrossRefGoogle Scholar
  12. 12.
    M.A. Brown, A.J. Rosakis, X. Feng, Y. Huang, E. Ustundag, Thin film/substrate systems featuring arbitrary film thickness and misfit strain distributions. Int. J. Solids Struct. 44(6), 1755 (2007)CrossRefGoogle Scholar
  13. 13.
  14. 14.
  15. 15.
    K.J. Stout, L. Blunt, Three Dimensional Surface Topography (Elsevier, Amsterdam, 2000)Google Scholar
  16. 16.
    M. Huff, PhD thesis (MIT, 1988)Google Scholar
  17. 17.
  18. 18.
  19. 19.
    C. Bai, Scanning Tunneling Microscopy and its Applications (Springer, New York, 2000)Google Scholar
  20. 20.
    C.J. Chen, Origin of atomic resolution on metal surfaces in scanning tunneling microscopy. Phys. Rev. Lett. 65(4), 448–451 (1990)CrossRefGoogle Scholar
  21. 21.
    G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    J. Goldstein, Scanning Electron Microscope and X-Ray Microanalysis (Springer, New York, 2003)CrossRefGoogle Scholar
  24. 24.
    B. Fultz, J. Howe, Transmission Electron Microscopy and Diffractometry of Materials (Springer, Berlin, Heidelberg, 2007)Google Scholar
  25. 25.
    H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley and Sons, New York, 1974)Google Scholar
  26. 26.
  27. 27.
    A. Benninghoven, F.G. Rüdenauer, H.W. Werner, Secondary Ion Mass Spectrometry: Basic Concepts (Instrumental Aspects, Applications, Trends, Wiley, New York, 1987)Google Scholar
  28. 28.
    T.A. Carlson, Photoelectron and Auger Spectroscopy (Plenum Press, New York, 1975). B. David, M.P. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (John Wiley & Sons, New York, 1983)CrossRefGoogle Scholar
  29. 29.
    M. Thompson, M.D. Baker, A. Christie, J.F. Tyson, Auger Electron Spectroscopy (John Wiley & Sons, New York, 1985)Google Scholar
  30. 30.
    G.S. Spasov, Method for auger analysis of thick insulators samples. Annu. J. Electron., 40 (2013). ISSN 1314-0078Google Scholar
  31. 31.
    J.F. Watts, J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES (Wiley & Sons, Chichester, 2003)CrossRefGoogle Scholar
  32. 32.
    L. Vincze, Confocal X-ray fluorescence imaging and XRF tomography for three-dimensional trace element microanalysis. Microsc. Microanal. 11, 682 (2005)CrossRefGoogle Scholar
  33. 33.
    S. Becker, Inorganic Mass Spectrometry: Principles and Applications (John Wiley & Sons, New York, 2008)Google Scholar
  34. 34.
    C. Jeynes, N.P. Barradas, E. Szilagyi, Accurate determination of quantity of material in thin films by Rutherford backscattering spectroscopy. Anal. Chem. 84, 6061 (2012)CrossRefGoogle Scholar
  35. 35.
    Z.B. Alfassi, Chemical Analysis by Nuclear Methods (John Wiley and Sons, New York, 1994)Google Scholar
  36. 36.
    D.J. Gardiner, Practical Raman Spectroscopy (Springer, Berlin/New York, 1989)CrossRefGoogle Scholar
  37. 37.
    P.R. Griffiths, J.A. De Haseth, Fourier Transform Infrared Spectrometry, 2nd edn. (John Wiley & Sons, New York, 2007)CrossRefGoogle Scholar
  38. 38.
    W.S. Lau, Infrared Characterization for Microelectronics (World Scientific Publishing, Singapore, 1999)CrossRefGoogle Scholar
  39. 39.
    S. Prussin, Junction depth measurements for VLSI structures. J Electrochem Soc 130(1), 184 (1982)CrossRefGoogle Scholar
  40. 40.
    T. Clarysse, W. Vandervorst, E.J.H. Collart, A.J. Murrell, Electrical characterization of ultra shallow dopant profiles, in Analytical and Diagnostic Techniques for Semiconductor Material, Devices, and Processes, Joint Proceedings of the Symposia on ALTECH 99, The Electro-Chemical Society, Leuven, Belgium, ECS PV 99-16, 1999Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Michael Huff
    • 1
  1. 1.Corporation for National Research InitiativesMEMS & Nanotechnology ExchangeRestonUSA

Personalised recommendations