Microsystems Manufacturing Methods: MEMS Processes

  • Michael Huff
Part of the Microsystems and Nanosystems book series (MICRONANO)


Chapter 4 gives an overview of the processing steps and process modules used in MEMS manufacturing. Like IC fabrication, MEMS processing steps can be lumped into major categories including depositions; lithography; etching; impurity doping; etc. While MEMS fabrication shares a number of attributes with IC processing steps reviewed in Chap. 3, there are also a number of differences. In some cases, MEMS uses the same equipment as IC fabrication, with the distinguishing feature either that the material processed is not something used in IC manufacturing or some other attribute, such as the thickness of the film deposited is exclusive to MEMS. Additionally, there are some MEMS processing steps that are unique (i.e., are not performed in IC fabrication) and may use specialized equipment. Some MEMS fabrication methods, such as bulk micromachining, are better labeled as process modules rather than processing steps, and these are also described. The substrates used in MEMS manufacturing are also far more diverse than those used in IC manufacturing and are also reviewed. Lastly, as in Chap. 3, general guidance as the best-case expected dimensional variations that can be obtained in performing these MEMS processes is summarized in Table 4.2.


Bulk micromachining Anisotropic wet etchants Etch stops Surface micromachining Wafer bonding Deep reactive ion etching Spray photoresist Lift-off LIGA Hot embossing 


  1. 1.
    J. Yang, H. Kahn, A.Q. He, S.M. Phillips, A.H. Heuer, A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films, the multipoly process. J. Microelectromech. Syst. 9, 485–494 (2000)CrossRefGoogle Scholar
  2. 2.
    D. Poenar, R. Wolffenbuttel, Optical properties of thin-film silicon-compatible materials. Appl. Opt. 36, 5122–5128 (1997)CrossRefGoogle Scholar
  3. 3.
    P.J. French, Polysilicon: a versatile material for microsystems. Sensors Actuators A 99, 3–12 (2002)CrossRefGoogle Scholar
  4. 4.
    L. Elbrecht, R. Catanescu, J. Zacheja, J. Binder, Highly phosphorus-doped polysilicon films with low tensile stress for surface micromachining using POCl3 diffusion doping. Sens. Actuators A 61, 374–378 (1997)CrossRefGoogle Scholar
  5. 5.
    G.M. Dougherty, A.P. Pisano, T.D. Sands, Processing and morphology of permeable polycrystalline silicon thin films. J. Mater. Res. 17, 2235–2242 (2002)CrossRefGoogle Scholar
  6. 6.
    M. Madou, Fundamentals of Microfabrication, 2nd edn. (CRC Press, Boca Raton, 2002), p. 274CrossRefGoogle Scholar
  7. 7.
    X. Zhang, T.Y. Zhang, M. Wong, Y. Zohar, Rapid thermal annealing of polysilicon thin films. J. Microelectromech. Syst. 7, 356–364 (1998)CrossRefGoogle Scholar
  8. 8.
    Y.B. Gianchandani, M. Shinn, K. Najafi, Impact of high-thermal budget anneals on polysilicon as a micromechanical material. J. Microelectromech. Syst. 7, 102–105 (1998)CrossRefGoogle Scholar
  9. 9.
    O. Tabata, K. Kawahata, S. Sugiyama, I. Igarashi, Mechanical property measurements of thin films using load-deflection of composite rectangular membrane, in Proceedings of Micro Electro Mechanical Systems, Salt Lake City, UT, pp. 152–156, 1989Google Scholar
  10. 10.
    H. Guckel, D.W. Burns, Planar processed polysilicon sealed cavities for pressure transducer arrays. Proc. Electron Device Meet. 30, 223–225 (1984)Google Scholar
  11. 11.
    R.T. Howe, R.S. Muller, Polycrystalline silicon micromechanical beams. J. Electrochem. Soc. 130, 1420 (1983)CrossRefGoogle Scholar
  12. 12.
    G. Fresquet, C. Azzaro, J.P. Couderc, Analysis and modeling of in situ boron-doped polysilicon deposition by LPCVD. J. Electrochem. Soc. 142, 538 (1995)CrossRefGoogle Scholar
  13. 13.
    M. Biebl, G.T. Mulhern, R.T. Howe, In situ phosphorus-doped polysilicon for integrated MEMS, technical digest, in 8th International Conference on Solid-State Sensors and Actuators, Eurosensors IX, Stockholm, Sweden, pp. 198–201, 1995Google Scholar
  14. 14.
    J.G.M. Mulder, P. Eppenga, M. Hendriks, J.E. Tong, An industrial LPCVD process for in situ phosphorus-doped polysilicon. J. Electrochem. Soc. 137, 273 (1990)CrossRefGoogle Scholar
  15. 15.
    S. Bouwstra, E.L. de Weerd, M.C. Elwenspoek, In situ phosphorus-doped polysilicon for excitation and detection in micromechanical resonators. Sens. Actuators A 24, 227–235 (1990)CrossRefGoogle Scholar
  16. 16.
    R.C. Anderson, R.S. Muller, C.W. Tobias, Porous polycrystalline silicon: A new material for MEMS. J. Microelectromech. Syst. 3, 10–18 (1994)CrossRefGoogle Scholar
  17. 17.
    H. Kahn, S. Stemmer, K. Nandakumar, A.H. Heuer, R.L. Mullen, R. Ballarini, M.A. Huff, Mechanical properties of thick, surface micromachined polysilicon films, in Proceedings of the 9th IEEE International Workshop on Microelectromechanical Systems, MEMS 96, San Diego, CA, pp. 343–348, 11–15 Feb 1996Google Scholar
  18. 18.
    J. Gaspar, T. Adrega, V. Chu, J.P. Conde, Thin-film paddle microresonators with high quality factors fabricated at temperatures below 110 °C, in Proceedings of the 18th International Conference on Microelectromechanical Systems, Miami, FL, pp. 125–128, 2005Google Scholar
  19. 19.
    S. Chang, S. Sivoththaman, Development of a low temperature MEMS process with a PECVD amorphous silicon structural layer. J. Micromech. Microeng. 16, 1307–1313 (2006)CrossRefGoogle Scholar
  20. 20.
    P. Alpuim, V. Chu, J.P. Conde, Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition. J. Appl. Phys. 86, 3812–3821 (1999)CrossRefGoogle Scholar
  21. 21.
    C.-K. Chung, M.-Q. Tsai, P.-H. Tsai, C. Lee, Fabrication and characterization of amorphous Si films by PECVD for MEMS. J. Micromech. Microeng. 15, 136–142 (2005)CrossRefGoogle Scholar
  22. 22.
    S. Chang, W. Eaton, J. Fulmer, C. Gonzalez, B. Underwood, Micromechanical structures in amorphous silicon, in Technical Digest, International Conference on Solid State Sensors and Actuators, San Francisco, CA, pp. 751–754, 1991Google Scholar
  23. 23.
    S.B. Patil, V. Chu, J.P. Conde, Surface micromachining of a thin film microresonator using dry decomposition of a polymer sacrificial layer. J. Vac. Sci. Technol. B 25, 455–458 (2007)CrossRefGoogle Scholar
  24. 24.
    S. Chang, S. Sivoththaman, A tunable RFMEMS inductor on silicon incorporating an amorphous silicon bimorph in a low-temperature process. IEEE Electron Device Lett. 27, 905–907 (2006)CrossRefGoogle Scholar
  25. 25.
    P. Gennissen, M. Bartek, P.J. French, P.M. Sarro, Bipolar-compatible epitaxial poly for smart sensors: stress minimization and applications. Sens. Actuators A 62, 636–645 (1997)CrossRefGoogle Scholar
  26. 26.
    M. Kirsten, B. Wenk, F. Ericson, J.A. Schweitz, W. Reithmuller, P. Lang, Deposition of thick doped polysilicon films with low stress in an epitaxial reactor for surface micromachining applications. Thin Solid Films 259, 181–187 (1995)CrossRefGoogle Scholar
  27. 27.
    P. Lange, M. Kirsten, W. Riethmuller, B. Wenk, G. Zwicker, J.R. Morante, F. Ericson, J.A. Schweitz, Thick polycrystalline silicon for surface-micromechanical applications: deposition, structuring, and mechanical characterization. Sens. Actuators A 54, 674–678 (1996)CrossRefGoogle Scholar
  28. 28.
    S. Greek, F. Ericson, S. Johansson, J.A. Schweitz, In situ tensile strength measurement and Weibull analysis of thick film and thin film micromachined polysilicon structures. Thin Solid Films 292, 247–254 (1997)CrossRefGoogle Scholar
  29. 29.
    O. De Sagazan, M. Denoual, P. Guil, D. Gaudin, O. Bonnaud, Microelectromechanical systems fast fabrication by selective thick polysilicon growth in epitaxial reactor. Microsyst. Technol. 12, 953–958 (2006)CrossRefGoogle Scholar
  30. 30.
    T. Abe, M.L. Reed, Low strain sputtered polysilicon for micromechanical structures, in Proceedings of the 9th International Workshop on Micro Electro Mechanical Systems, San Diego, CA, pp. 258–262, 1996Google Scholar
  31. 31.
    P. Pal, S. Chandra, RF sputtered silicon for MEMS. J. Micromech. Microeng. 15, 1536–1546 (2005)CrossRefGoogle Scholar
  32. 32.
    A.E. Franke, Y. Jiao, M.T. Wu, T.J. King, R.T. Howe, Post-CMOS modular integration of poly-sige microstructures using poly-ge sacrificial layers, in Technical Digest, Solid State Sensor and Actuator Workshop, Hilton Head, SC, pp. 18–21, 2000Google Scholar
  33. 33.
    C.W. Low, T.J.K. Liu, R.T. Howe, Characterization of polycrystalline silicon-germanium film deposition for modularly integrated MEMS applications. J. Microelectromech. Syst. 16, 68–77 (2007)CrossRefGoogle Scholar
  34. 34.
    M.-A. Eyoum, T.-J. King, Low-resistance silicon-germanium contact technology for modular integration of MEMS with electronics. J. Electrochem. Soc. 151, J21–J25 (2004)CrossRefGoogle Scholar
  35. 35.
    S. Sedky, A. Bayoumy, A. Alaa, A. Nagy, A. Witvrouw, Optimal conditions for micromachining Si1–xGex at 210 °C. J. Microelectromech. Syst. 16, 581–588 (2007)CrossRefGoogle Scholar
  36. 36.
    S. Sedky, P. Fiorini, M. Caymax, S. Loreti, K. Baert, L. Hermans, R. Mertens, Structural and mechanical properties of polycrystalline silicon germanium for micromachining applications. J. Microelectromech. Syst. 7, 365–372 (1998)CrossRefGoogle Scholar
  37. 37.
    S. Sedky, A. Witvrouw, K. Baert, Poly SiGe, a promising material for MEMS monolithic integration with the driving electronics. Sens. Actuators A 97–98, 503–511 (2002)CrossRefGoogle Scholar
  38. 38.
    A.E. Franke, J.M. Heck, T.J. King, R.T. Howe, Polycrystalline silicon-germanium films for integrated microsystems. J. Microelectromech. Syst. 12, 160–171 (2003)CrossRefGoogle Scholar
  39. 39.
    T.-J. King, J.P. McVittie, K.C. Saraswat, Electrical properties of heavily doped polycrystalline silicon-germanium films. IEEE Trans. Electron Device 41, 228–232 (1994)CrossRefGoogle Scholar
  40. 40.
    M. Gromova, A. Mehta, K. Baert, A. Witvrouw, Characterization and strain gradient optimization of PECVD poly-SiGe layers for MEMS applications. Sens. Actuators A 130–131, 403–410 (2006)CrossRefGoogle Scholar
  41. 41.
    S. Kannan, C. Taylor, D. Allred, PECVD growth of Six:Ge1-x films for high speed devices and MEMS. J. Non-Cryst. Solids 352, 1272–1274 (2006).Google Scholar
  42. 42.
    C. Rusu, S. Sedky, B. Parmentier, A. Verbist, O. Richard, B. Brijs, L. Geenen, A. Witvrouw, F. Larmer, F. Fischer, S. Kronmuller, V. Leca, B. Otter, New low-stress PECVD poly-SiGe layers for MEMS. J. Microelectromech. Syst. 12, 816–825 (2003)CrossRefGoogle Scholar
  43. 43.
    A. Mehta, M. Gromova, C. Rusu, R. Olivier, K. Baert, C. van Hoof, A. Witvrouw, Novel high growth rate processes for depositing poly-sige structural layers at CMOS compatible temperatures, in Proceedings of the 17th International Conference on Micro Electro Mechanical Systems, Maastricht, The Netherlands, pp. 721–724, 2004Google Scholar
  44. 44.
    I. Nakamura, T.A. Hirokazu, D. Hoshi, M. Isomura, Formation of polycrystalline SiGe thin films by the RF magnetron sputtering method with Ar–H2 mixture gases. Vacuum 80(7), 31 (2006)Google Scholar
  45. 45.
    G.-P. Ru, G.-W. Wang, Y.-L. Jiang, W. Huang, X.-P. Qu, S.-Y. Zhu, B.-Z. Li, Rectifying characteristics of sputter-deposited SiGe diodes. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 1301 (2003)CrossRefGoogle Scholar
  46. 46.
    B. Li, B. Xiong, L. Jiang, Y. Zohar, M. Wong, Germanium as a versatile material for low temperature micromachining. J. Microelectromech. Syst. 8, 366–372 (1999)CrossRefGoogle Scholar
  47. 47.
    A. Franke, D. Bilic, D.T. Chang, P.T. Jones, T.J. King, R.T. Howe, C.G. Johnson, Post- CMOS integration of germanium microstructures, in Proceedings of the 12th International Conference on Microelectromechanical Systems, IEEE, Piscataway, NJ, pp. 630–637, 1999Google Scholar
  48. 48.
    J.M. Heck, C.G. Keller, A.E. Franke, L. Muller, T.J. King, R.T. Howe, High aspect ratio polysilicon-germanium microstructures, in Proceedings of the 10th International Conference on Solid State Sensors and Actuators, Sendai, Japan, pp. 328–334, 1999Google Scholar
  49. 49.
    I.H. Khan, Low-temperature epitaxy of Ge films by sputter deposition. J. Appl. Phys. 44, 14 (1973)CrossRefGoogle Scholar
  50. 50.
    C.R. Stoldt, C. Carraro, W.R. Ashurst, D. Gao, R.T. Howe, R. Maboudian, A low temperature CVD process for silicon carbide MEMS. Sens. Act. A 97–98, 410–415 (2002)CrossRefGoogle Scholar
  51. 51.
    C.A. Zorman, S. Rajgolpal, X.A. Fu, R. Jezeski, J. Melzak, M. Mehregany, Deposition of polycrystalline 3C-SiC films on 100 mm-diameter (100) Si wafers in a large-volume LPCVD furnace. Electrochem. Solid State Lett. 5, G99–G101 (2002)CrossRefGoogle Scholar
  52. 52.
    L. Behrens, E. Peiner, A.S. Bakin, A. Schlachetzski, Micromachining of silicon carbide on silicon fabricated by low-pressure chemical vapor deposition. J. Micromech. Microeng. 12, 380–384 (2002)CrossRefGoogle Scholar
  53. 53.
    X.A. Fu, R. Jezeski, C.A. Zorman, M. Mehregany, Use of deposition pressure to control the residual stress in polycrystalline SiC films. Appl. Phys. Lett. 84, 341–343 (2004)CrossRefGoogle Scholar
  54. 54.
    X.-A. Fu, J.L. Dunning, C.A. Zorman, M. Mehregany, Polycrystalline 3C-SiC thin films deposited by dual precursor LPCVD for MEMS applications. Sens. Actuators A 119, 169–176 (2005)CrossRefGoogle Scholar
  55. 55.
    D. Gao, M.B. Wijesundara, C. Carraro, R.T. Howe, R. Maboudian, Recent progress toward and manufacturable polycrystalline SiC surface micromachining technology. IEEE Sensors J. 4, 441–448 (2004)CrossRefGoogle Scholar
  56. 56.
    Properties of SiC, Ioffe Institute. Accessed 2018–06–06Google Scholar
  57. 57.
    C.S. Roper, R.T. Howe, R. Maboudian, Stress control of polycrystalline 3C-SiC films in a large-scale LPCVD reactor using 1,3-disilabutane and dichlorosilane as precursors. J. Micromech. Microeng. 16, 2736–2739 (2006)CrossRefGoogle Scholar
  58. 58.
    Y. Yamaguchi, H. Nagasawa, T. Shoki, N. Armaka, H. Mitsui, Properties of heteroepitaxial 3C-SiC films grown by LPCVD. Sens. Actuators A 54, 695–699 (1996)CrossRefGoogle Scholar
  59. 59.
    D. Gao, C. Carraro, V. Radmilovic, R.T. Howe, R. Maboudian, Fracture of polycrystalline 3C-SiC films in microelectromechanical systems. J. Microelectromech. Syst. 13, 972–976 (2004)CrossRefGoogle Scholar
  60. 60.
    E. Hurtos, J. Rodriguez-Viejo, Residual stress and texture in poly-SiC films grown by low pressure organometallic chemical-vapor deposition. J. Appl. Phys. 87, 1748–1758 (2000)CrossRefGoogle Scholar
  61. 61.
    K. Murooka, I. Higashikawa, Y. Gomei, Improvement of the Young’s modulus of SiC film by low pressure chemical vapor deposition with B2H6 gas. Appl. Phys. Lett. 69, 37–39 (1996)CrossRefGoogle Scholar
  62. 62.
    J. Chen, J. Scofield, A.J. Steckl, Formation of SiC SOI structures by direct growth on insulating substrates. J. Electrochem. Soc. 147, 3845–3849 (2000)CrossRefGoogle Scholar
  63. 63.
    G. Sun, J. Ning, X. Liu, Y. Zhao, J. Li, L. Wang, W. Zhao, L. Wang, Heavily doped polycrystalline 3C-SiC growth on SiO2/Si (100) substrates for resonator applications. Mater. Sci. Forum 556–557, 179–182 (2007)CrossRefGoogle Scholar
  64. 64.
    H. Zhang, H. Guo, Y. Wang, G. Zhang, Z. Li, Study on a PECVD SiC-coated pressure sensor. J. Micromech. Microeng. 17, 426–431 (2007)CrossRefGoogle Scholar
  65. 65.
    P.M. Sarro, C.R. deBoer, E. Korkmaz, J.M.W. Laros, Low-stress PECVD SiC thin films for IC-compatible microstructures. Sens. Actuators A 67, 175–180 (1998)CrossRefGoogle Scholar
  66. 66.
    C. Iliescu, B. Chen, D.P. Poenar, Y.Y. Lee, PECVD amorphous silicon carbide membranes for cell culturing. Sens. Actuators B 129, 404–411 (2008)CrossRefGoogle Scholar
  67. 67.
    L.S. Pakula, H. Yang, H.T.M. Pham, P.J. French, P.M. Sarro, Fabrication of a CMOS compatible pressure sensor for harsh environments. J. Micromech. Microeng. 14, 1478–1483 (2004)CrossRefGoogle Scholar
  68. 68.
    A. Klumpp, U. Schaber, H.L. Offereins, K. Kuhl, H. Sandmaier, Amorphous silicon carbide and its application in silicon micromachining. Sens. Actuators A 41–42, 310–316 (1994)CrossRefGoogle Scholar
  69. 69.
    J. Du, C.A. Zorman, Low temperature a-SiC/Si direct bonding technology for MEMS/NEMS, in Technical Digest of the 14th International Conference on Solid State Sensors, Actuators and Microsystems, Lyon, France, pp. 2075–2078, 2007Google Scholar
  70. 70.
    M. Eickhoff, H. Moller, G. Kroetz, J. von Berg, R. Ziermann, A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on SOI substrates. Sensors Actuators 74, 56–59 (1999)CrossRefGoogle Scholar
  71. 71.
    G. Krotz, H. Moller, M. Eickhoff, S. Zappe, R. Ziermann, E. Obermeier, J. Stoemenos, Heteroepitaxial growth of 3C-SiC on SOI for sensor applications. Mater. Sci. Eng. B 61, 516–521 (1999)CrossRefGoogle Scholar
  72. 72.
    D. Young, J.D. Du, C.A. Zorman, W.H. Ko, High-temperature single crystal 3C-SiC capacitive pressure sensor. IEEE Sensors J. 4, 464–470 (2004)CrossRefGoogle Scholar
  73. 73.
    N. Ledermann, J. Baborowski, J.P. Muralt, N. Xantopoulos, J.M. Tellenbach, Sputtered silicon carbide thin films as protective coating for MEMS applications. Surf. Coat. Technol. 125, 246–250 (2000)CrossRefGoogle Scholar
  74. 74.
    S. Inoue, T. Namazu, H. Tawa, M. Niibe, K. Koterazawa, Stress control of a-SiC films deposited by dual source dc magnetron sputtering. Vacuum 80, 744–747 (2006)CrossRefGoogle Scholar
  75. 75.
    M.A. Huff, D.A. Aidala, J.E. Butler, MEMS applications using diamond thin films. Solid State Technol. 49(4), 45–48 (2006)Google Scholar
  76. 76.
    O. Auciello, J. Birrell, J.A. Carlisle, J. Geri, X. Xiao, B. Peng, H.D. Espinosa, Materials science and fabrication processes for a new MEMS technology based on ultrananocrystalline diamond thin film. J. Phys. Condens. Matter 16, R539–R552 (2004)CrossRefGoogle Scholar
  77. 77.
    A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, Q. Ding, Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices. Diam. Relat. Mater. 10, 1952–1961 (2001)CrossRefGoogle Scholar
  78. 78.
    D.K. Reinhard, T.A. Grotjohn, M. Becker, M.K. Yaran, T. Schuelke, J. Asmussen, Fabrication and properties of ultranano, nano, and microcrystalline diamond membranes and sheets. J. Vac. Sci. Technol. B 22, 2811 (2004)CrossRefGoogle Scholar
  79. 79.
    X. Xiao, B.W. Sheldon, Y. Qi, A.K. Kothari, Intrinsic stress evolution in nanocrystalline diamond thin films with deposition temperature. Appl. Phys. Lett. 92, 131908 (2008)CrossRefGoogle Scholar
  80. 80.
    H. Li, B.W. Sheldon, A. Kothari, Z. Ban, B.L. Walden, Stress evolution in nanocrystalline diamond films produced by chemical vapor deposition. J. Appl. Phys. 100, 094309 (2006)CrossRefGoogle Scholar
  81. 81.
    D.R. Wur, J.L. Davidson, W.P. Kang, D.L. Kinser, Polycrystalline diamond pressure sensor. J. Microelectromech. Syst. 4, 34–41 (1995)CrossRefGoogle Scholar
  82. 82.
    H.D. Espinosa, B.C. Prorok, B. Peng, K.H. Kim, M. Moldovan, O. Auciello, J.A. Carlisle, D.M. Gruen, D.C. Mancini, Mechanical properties of ultrananocrystalline diamond thin films relevant to MEMS/NEMS devices. Exp. Mech. 4, 256–268 (2003)CrossRefGoogle Scholar
  83. 83.
    H.D. Espinosa, B. Peng, B.C. Prorok, N. Moldovan, O. Auciello, J.A. Carlisle, D.M. Gruen, D.C. Mancini, Fracture strength of ultrananocrystalline diamond thin films – identification of Weibull parameters. J. Appl. Phys. 94, 6076 (2003)CrossRefGoogle Scholar
  84. 84.
    H. Bjorkman, P. Rangsten, P. Hollman, K. Hjort, Diamond replicas from microstructured silicon masters. Sensors Actuators 73, 24–29 (1999)CrossRefGoogle Scholar
  85. 85.
    M. Aslam, D. Schulz, Technology of diamond microelectromechanical systems, in Proceedings of the 8th International Conference on Solid State Sensors and Actuators, Eurosensors IX, Stockholm, Sweden, pp. 222–224, 1995Google Scholar
  86. 86.
    R. Ramesham, Fabrication of diamond microstructures for microelectromechanical systems (MEMS) by a surface micromachining process. Thin Solid Films 340, 1–6 (1999)CrossRefGoogle Scholar
  87. 87.
    Y. Yang, X. Wang, C. Ren, J. Xie, P. Lu, W. Wang, Diamond surface micromachining technology. Diam. Relat. Mater. 8, 1834–1837 (1999)CrossRefGoogle Scholar
  88. 88.
    S.A. Smallwood, K.C. Eapen, S.T. Patton, J.S. Zabinski, Performance results of MEMS coated with a conformal DLC. Wear 260, 1179–1189 (2006)CrossRefGoogle Scholar
  89. 89.
    J.K. Luo, Y.Q. Fu, H.R. Le, J.A. Williams, S.M. Spearing, W.I. Milne, Diamond and diamond-like carbon MEMS. J. Micromech. Microeng. 17, S147–S163 (2007)CrossRefGoogle Scholar
  90. 90.
    M. Ohring, The Materials Science of Thin Films (Academic Press, London, 1993)Google Scholar
  91. 91.
    J.R. Davis (Ed.), Base-metal selection, in Metals Handbook Desk Edition, 2nd edn. (ASM International, Materials Park, 1998)Google Scholar
  92. 92.
    S.K. Prasad, Advanced Wirebond Interconnection Technology (Kluwer, Bangalore, 2004)Google Scholar
  93. 93.
    G.G. Harman, Wire Bonding in Microelectronics, 2nd edn. (McGraw Hill, New York, 1997)Google Scholar
  94. 94.
    S. D. Cramer, B. S. Covino (eds.), ASM Handbook, Vol. 13B: Corrosion: Materials (ASM International, Materials Park, 2005)Google Scholar
  95. 95.
    K. L. Mittal (ed.), Adhesion Aspects of Thin Films, vol 2 (VSP, Utrecht, 2005), p. 125Google Scholar
  96. 96.
    C.K. Hu, M.B. Small, F. Kaufman, D.J. Pearson, in Tungsten and Other Advanced Metals for VLSI/ULSI Applications, ed. by S. S. Wong, S. Furuka, (Materials Research Society, Pittsburgh, 1989), p. 369Google Scholar
  97. 97.
    M. K. Ghosh, K. L. Mittal (eds.), Polyimides: Fundamentals and Applications, Ch. 20–21 (Marcel Dekker, New York, 1996)Google Scholar
  98. 98.
    F.K. LeGoues, B.D. Silverman, P.S. Ho, The microstructure of metal-polyimide interfaces. J. Vac. Sci. Technol. A 6, 2200–2204 (1988)CrossRefGoogle Scholar
  99. 99.
    N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998)CrossRefGoogle Scholar
  100. 100.
    J.L. Vossen, W. Kern, Thin Film Processes (Academic Press, London, 1978)Google Scholar
  101. 101.
    P.W. Kruse, Uncooled Thermal Imaging (SPIE Press, Bellingham, 2002)Google Scholar
  102. 102.
    J. Yang, O. Paul, Fracture properties of LPCVD silicon nitride thin films from the load deflection of long membranes. Sens. Actuators A 97–98, 520–526 (2002)CrossRefGoogle Scholar
  103. 103.
    J.M. Olson, Analysis of LPCVD process conditions for the deposition of low stress silicon nitride. Part 1: preliminary LPCVD experiments. Mater. Sci. Semicond. Process. 5, 51–60 (2002)CrossRefGoogle Scholar
  104. 104.
    M. Sekimoto, H. Yoshihara, T. Ohkubo, Silicon nitride single-layer x-ray mask. J. Vac. Sci. Technol. 21, 1017–1021 (1982)CrossRefGoogle Scholar
  105. 105.
    J.G.E. Gardeniers, H.A.C. Tilmans, C.C.G. Visser, LPCVD silicon-rich silicon nitride films for applications in micromechanics studied with statistical experimental design. J. Vac. Sci. Technol. A 14, 2879–2892 (1996)CrossRefGoogle Scholar
  106. 106.
    P. Temple-Boyer, C. Rossi, E. Saint-Etienne, E. Scheid, Residual stress in low pressure chemical vapor deposition SiNx films deposited from silane and ammonia. J. Vac. Sci. Technol. A 16, 2003–2007 (1998)CrossRefGoogle Scholar
  107. 107.
    C. Mastrangelo, Y.-C. Tai, R. Muller, Thermophysical properties of low-residual stress, silicon-rich, LPCVD silicon nitride films. Sens. Actuators 856–860, A21–A23 (1990)Google Scholar
  108. 108.
    P.P. Tsai, I.-C. Chen, C.J. Ho, Ultralow power carbon monoxide microsensor by micromachining techniques. Sens. Actuators B 76, 380–387 (2001)CrossRefGoogle Scholar
  109. 109.
    P.J. French, P.M. Sarro, R. Mallee, E.J.M. Fakkeldij, R.F. Wolffenbuttel, Optimization of a low-stress silicon nitride process for surface micromachining applications. Sens. Actuators A 58, 149–157 (1997)CrossRefGoogle Scholar
  110. 110.
    J. Yang, J. Gaspar, O. Paul, Fracture properties of LPCVD silicon nitride and thermally grown silicon oxide thin films from the load-deflection of long Si3N4 and SiO2/Si3N4 diaphragms. J. Microelectromech. Syst. 17, 1120–1134 (2008)CrossRefGoogle Scholar
  111. 111.
    S. Hong, T.P. Weihs, J.C. Bravman, W.D. Nix, Measuring stiffness and residual stresses of silicon nitride thin films. J. Electron. Mater. 19, 903–909 (1990)CrossRefGoogle Scholar
  112. 112.
    E.I. Bromley, J.N. Randall, D.C. Flanders, R.W. Mountain, A technique for the determination of stress in thin films. J. Vac. Sci. Technol. B 1, 1364–1366 (1983)CrossRefGoogle Scholar
  113. 113.
    M. Martyniuk, J. Antoszewski, C.A. Musca, J.M. Dell, L. Faraone, Dielectric thin films for MEMS-based optical sensors. Microelectron. Reliab. 47, 733–738 (2007)CrossRefGoogle Scholar
  114. 114.
    H. Huang, K.J. Winchester, A. Suvorova, B.R. Lawne, Y. Liud, X.Z. Hud, J.M. Dell, L. Faraone, Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films. Mater. Sci. Eng. A 435–436, 453–459 (2006)CrossRefGoogle Scholar
  115. 115.
    M.-C. Jo, S.-K. Park, S.-J. Park, A study on resistance of PECVD silicon nitride thin film to thermal stress-induced cracking. Appl. Surf. Sci. 140, 12–18 (1999)CrossRefGoogle Scholar
  116. 116.
    C. Iliescu, F.E.H. Tay, J. Wei, Low stress PECVD-SiNx layers at high deposition rates using high power and high frequency for MEMS applications. J. Micromech. Microeng. 16, 869–874 (2006)CrossRefGoogle Scholar
  117. 117.
    D. Poenar, P.J. French, R. Mallee, P.M. Sarro, R.F. Wolffenbuttel, PSG layers for surface micromachining. Sens. Actuators A 41–42, 304–309 (1994)CrossRefGoogle Scholar
  118. 118.
    Y. Shioya, M. Mamoru, Comparison of phosphosilicate glass films deposited by three different chemical vapor deposition methods. J. Electrochem. Soc. 133, 1943–1950 (1986)CrossRefGoogle Scholar
  119. 119.
    R.M. Levin, A.C. Adams, Low pressure deposition of phosphosilicate glass films. J. Electrochem. Soc. 129, 1588–1592 (1982)CrossRefGoogle Scholar
  120. 120.
    S.K. Ghandhi, VLSI Fabrication Principles – Silicon and Gallium Arsenide (Wiley, New York, 1983)Google Scholar
  121. 121.
    J. Leconte, F. Iker, S. Jorez, N. Andre, J. Proost, T. Pardoen, D. Flandre, J.P. Raskin, Thin films stress extraction using micromachined structures and wafer curvature measurements. Microelectron. Eng. 76, 219–226 (2004)CrossRefGoogle Scholar
  122. 122.
    X. Zhang, K.-S. Chen, R. Ghodssi, A.A. Ayon, S.M. Spearing, Residual stress and fracture in thick tetraethylorthosilicate (TEOS) and silane-based PECVD oxide films. Sens. Actuators A 91, 373–380 (2001)CrossRefGoogle Scholar
  123. 123.
    V. Bhatt, S. Chandra, Silicon dioxide films by RF sputtering for microelectronic and MEMS. J. Micromech. Microeng. 17, 1066–1077 (2007)CrossRefGoogle Scholar
  124. 124.
    E. Meng, X. Zhang, W. Benard, Additive processes for polymeric materials, Chapter 4, in MEMS Material and Process Handbook, (Springer, New York, 2011)Google Scholar
  125. 125.
    K.Y. Lee, N. LaBianca, S.A. Rishton, et al., Micromachining applications of a high resolution ultrathick photoresist. J. Vac. Sci. Technol. B 13, 3012–3016 (1995)CrossRefGoogle Scholar
  126. 126.
    J.M. Shaw, J.D. Gelorme, N.C. Labianca, et al., Negative photoresists for optical lithography. IBM J. Res. Dev. 41, 81–94 (1997)CrossRefGoogle Scholar
  127. 127.
    P. Abgrall, V. Conedera, H. Camon, et al., SU-8 as a structural material for labs-on-chips and microelectromechanical systems. Electrophoresis 28, 4539–4551 (2007)CrossRefGoogle Scholar
  128. 128.
    M. Despont, H. Lorenz, N. Fahrni, et al., High-aspect-ratio, ultrathick, negative-tone nearuv photoresist for MEMS applications, in Proceedings of the IEEE Microelectromechanical Systems Conference, Nagoya, Japan, pp. 518–522, 1997Google Scholar
  129. 129.
    L.J. Guerin, M. Bossel, M. Demierre, et al., Simple and low cost fabrication of embedded micro-channels by using a new thick-film photoplastic, in Technical Digest, International Conference on Solid State Sensors and Actuators, Chicago, IL, pp. 1419–1422, 1997Google Scholar
  130. 130.
    B. Bohl, R. Steger, R. Zengerle, et al., Multi-layer SU-8 lift-off technology for microfluidic devices. J. Micromech. Microeng. 15, 1125–1130 (2005)CrossRefGoogle Scholar
  131. 131.
    R.J. Jackman, T.M. Floyd, R. Ghodssi, et al., Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy. J. Micromech. Microeng. 11, 263–269 (2001)CrossRefGoogle Scholar
  132. 132.
    A. Mata, A.J. Fleischman, S. Roy, Fabrication of multi-layer SU-8 microstructures. J. Micromech. Microeng. 16, 276–284 (2006)CrossRefGoogle Scholar
  133. 133.
    M. Han, W. Lee, S.K. Lee, et al., 3D microfabrication with inclined/rotated UV lithography. Sens. Actuators A Phys. 111, 14–20 (2004)CrossRefGoogle Scholar
  134. 134.
    Y.K. Yoon, J.H. Park, M.G. Allen, Multidirectional UV lithography for complex 3-DMEMS structures. J. Microelectromech. Syst. 15, 1121–1130 (2006)CrossRefGoogle Scholar
  135. 135.
    W.H. Wong, E.Y.B. Pun, Exposure characteristics and three-dimensional profiling of SU8C resist using electron beam lithography. J. Vac. Sci. Technol. B 19, 732–735 (2001)CrossRefGoogle Scholar
  136. 136.
    J. Zhang, K.L. Tan, G.D. Hong, et al., Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS. J. Micromech. Microeng. 11, 20–26 (2001)CrossRefGoogle Scholar
  137. 137.
    N.C. LaBianca, J.D. Gelorme, High-aspect-ratio resist for thick-film applications, in Proceedings of SPIE – The International Society for Optical Engineering, Santa Clara, CA, USA, pp. 846–852, 1995Google Scholar
  138. 138.
    Y.J. Chuang, F.G. Tseng, J.H. Cheng, et al., A novel fabrication method of embedded microchannels by using SU-8 thick-film photoresists. Sens. Actuators A Phys. 103, 64–69 (2003)CrossRefGoogle Scholar
  139. 139.
    B.E.J. Alderman, C.M. Mann, D.P. Steenson, et al., Microfabrication of channels using an embedded mask in negative resist. J. Micromech. Microeng. 11, 703–705 (2001)CrossRefGoogle Scholar
  140. 140.
    A. Heeren, C.P. Luo, G. Roth, et al., Diffusion along microfluidic channels. Microelectron. Eng. 83, 1669–1672 (2006)CrossRefGoogle Scholar
  141. 141.
    Y.T. Chen, D. Lee, A bonding technique using hydrophilic SU-8. J. Micromech. Microeng. 17, 1978–1984 (2007)CrossRefGoogle Scholar
  142. 142.
    D.J. Strike, G.C. Fiaccabrino, M. Koudelka-Hep, et al., Enzymatic microreactor using Si, glass and EPON SU-8. Biomed. Microdevices 2, 175 (2000)CrossRefGoogle Scholar
  143. 143.
    J. West, B. Karamata, B. Lillis, et al., Application of magnetohydrodynamic actuation to continuous flow chemistry. Lab Chip 2, 224–230 (2002)CrossRefGoogle Scholar
  144. 144.
    S. Li, C.B. Freidhoff, R.M. Young, et al., Fabrication of micronozzles using low-temperature wafer-level bonding with SU-8. J. Micromech. Microeng. 13, 732–738 (2003)CrossRefGoogle Scholar
  145. 145.
    J.H. Park, Y.K. Yoon, S.O. Choi, et al., Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery. I.E.E.E. Trans. Biomed. Eng. 54, 903–913 (2007)Google Scholar
  146. 146.
    S. Rajaraman, S.O. Choi, R.H. Shafer, et al., Microfabrication technologies for a coupled three-dimensional microelectrode, microfluidic array. J. Micromech. Microeng. 17, 163–171 (2007)CrossRefGoogle Scholar
  147. 147.
    V. Seidemann, J. Rabe, M. Feldmann, et al., SU8-micromechanical structures with in situ fabricated movable parts. Microsyst. Technol. 8, 348–350 (2002)CrossRefGoogle Scholar
  148. 148.
    V. Seidemann, S. Butefisch, S. Buttgenbach, Fabrication and investigation of in-plane compliant SU8 structures for MEMS and their application to micro valves and micro grippers. Sens. Actuators A Phys. 97–98, 457–461 (2002)CrossRefGoogle Scholar
  149. 149.
    H. Lorenz, M. Despont, N. Fahrni, et al., SU-8: A low-cost negative resist for MEMS. J. Micromech. Microeng. 7, 121–124 (1997)CrossRefGoogle Scholar
  150. 150.
    H. Lorenz, M. Despont, N. Fahrni, et al., High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS. Sens. Actuators A Phys. 64, 33–39 (1998)CrossRefGoogle Scholar
  151. 151.
    S.J. Kim, H. Yang, K. Kim, et al., Study of SU-8 to make a Ni master-mold: Adhesion, sidewall profile, and removal. Electrophoresis 27, 3284–3296 (2006)CrossRefGoogle Scholar
  152. 152.
    P.M. Dentinger, W.M. Clift, S.H. Goods, Removal of SU-8 photoresist for thick film applications. Microelectron. Eng. 61–2, 993–1000 (2002)CrossRefGoogle Scholar
  153. 153.
    C.-H. Ho, K.-P. Chin, C.-R. Yang, et al., Ultrathick SU-8 mold formation and removal, and its application to the fabrication of LIGA-like micromotors with embedded roots. Sens. Actuators A Phys. 102, 130–138 (2002)CrossRefGoogle Scholar
  154. 154.
    A. Johansson, M. Calleja, P.A. Rasmussen, et al., SU-8 cantilever sensor system with integrated readout. Sens. Actuators A Phys. 123–124, 111–115 (2005)CrossRefGoogle Scholar
  155. 155.
    P. Basset, A. Kaiser, D. Collard, et al., Process and realization of a three-dimensional gold electroplated antenna on a flexible epoxy film for wireless micromotion system. J. Vac. Sci. Technol. B 20, 1465–1470 (2002)CrossRefGoogle Scholar
  156. 156.
    L. Dellmann, S. Roth, C. Beuret, et al., Fabrication process of high aspect ratio elastic and SU-8 structures for piezoelectric motor applications. Sens. Actuators A Phys. 70, 42–47 (1998)CrossRefGoogle Scholar
  157. 157.
    S. Mouaziz, G. Boero, R.S. Popovic, et al., Polymer-based cantilevers with integrated electrodes. J. Microelectromech. Syst. 15, 890–895 (2006)CrossRefGoogle Scholar
  158. 158.
    G. Kim, B. Kim, J. Brugger, All-photoplastic microstencil with self-alignment for multiple layer shadow-mask patterning. Sens. Actuators A Phys. 107, 132–136 (2003)CrossRefGoogle Scholar
  159. 159.
    S. Tuomikoski, S. Franssila, Free-standing SU-8 microfluidic chips by adhesive bonding and release etching. Sens. Actuators A Phys. 120, 408–415 (2005)CrossRefGoogle Scholar
  160. 160.
    C. Luo, A. Govindaraju, J. Garra, et al., Releasing SU-8 structures using polystyrene as a sacrificial material. Sens. Actuators A Phys. 114, 123–128 (2004)CrossRefGoogle Scholar
  161. 161.
    H. Lorenz, M. Laudon, P. Renaud, Mechanical characterization of a new high-aspect-ratio near UV-photoresist. Microelectron. Eng. 41–42, 371–374 (1998)CrossRefGoogle Scholar
  162. 162.
    S.J. Clarson, J.A. Semlyen, Siloxane Polymers (Prentice Hall, Englewood Cliffs, 1993)Google Scholar
  163. 163.
    J.C. Lotters, W. Olthuis, P.H. Veltink, et al., The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 7, 145–147 (1997)CrossRefGoogle Scholar
  164. 164.
    ABCR, Research Chemicals and Metals Catalogue (ABCR, Karlsruhe, 1994)Google Scholar
  165. 165.
    J.C. Salamone, Polymeric Materials Encyclopedia (CRC Press, Rochester, 1996)Google Scholar
  166. 166.
    D.W. van Krevelen, P.J. Hoftyzer, Properties of Polymers, Their Estimation and Correlation with Chemical Structure (Elsevier Scientific, Amsterdam, 1976)Google Scholar
  167. 167.
    Y.H. Kim, K.S. Shin, J.Y. Kang, et al., Poly(dimethylsiloxane)-based packaging technique for microchip fluorescence detection system applications. J. Microelectromech. Syst. 15, 1152–1158 (2006)CrossRefGoogle Scholar
  168. 168.
    M.A. Eddings, B.K. Gale, A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices. J. Micromech. Microeng. 16, 2396–2402 (2006)CrossRefGoogle Scholar
  169. 169.
    Y.N. Xia, J.J. McClelland, R. Gupta, et al., Replica molding using polymeric materials: A practical step toward nanomanufacturing. Adv. Mater. 9, 147–149 (1997)CrossRefGoogle Scholar
  170. 170.
    H.L. Cong, T.R. Pan, Photopatternable conductive PDMS materials for microfabrication. Adv. Funct. Mater. 18, 1912–1921 (2008)CrossRefGoogle Scholar
  171. 171.
    K. Tsougeni, A. Tserepi, E. Gogolides, Photosensitive poly(dimethylsiloxane) materials for microfluidic applications. Microelectron. Eng. 84, 1104–1108 (2007)CrossRefGoogle Scholar
  172. 172.
    A.M. Wilson, Polyimide insulators for multilevel interconnections. Thin Solid Films 83, 145–163 (1981)CrossRefGoogle Scholar
  173. 173.
    M. Gad-el-Hak, MEMS: Design and Fabrication (CRC/Taylor & Francis, Boca Raton, 2006)Google Scholar
  174. 174.
    M. Pedersen, W. Olthuis, P. Bergveld, High-performance condenser microphone with fully integrated CMOS amplifier and DC-DC voltage converter. J. Microelectromech. Syst. 7, 387–394 (1998)CrossRefGoogle Scholar
  175. 175.
    D. Memmi, V. Foglietti, E. Cianci, et al., Fabrication of capacitive micromechanical ultrasonic transducers by low-temperature process. Sens. Actuators A Phys. 99, 85–91 (2002)CrossRefGoogle Scholar
  176. 176.
    M.A. Schmidt, R.T. Howe, S.D. Senturia, et al., Design and calibration of a microfabricated floating-element shear-stress sensor. IEEE Trans. Electron Device 35, 750–757 (1988)CrossRefGoogle Scholar
  177. 177.
    A.B. Frazier, C.H. Ahn, M.G. Allen, Development of micromachined devices using polyimide-based processes. Sens. Actuators A Phys. 45, 47–55 (1994)CrossRefGoogle Scholar
  178. 178.
    P.J. Rousche, D.S. Pellinen, D.P. Pivin, et al., Flexible polyimide-based intracortical electrode arrays with bioactive capability. I.E.E.E. Trans. Biomed. Eng. 48, 361–371 (2001)Google Scholar
  179. 179.
    E. Valcheva, J. Birch, P.O.A. Persson, S. Tungasmita, L. Hultman, Epitaxial growth and orientation of AlN thin films on Si(001) substrates deposited by reactive magnetron sputtering. J. Appl. Phys. 100, 123514 (2006)CrossRefGoogle Scholar
  180. 180.
    H.Y. Shin, W.H. Lee, W.C. Kao, Y.C. Chuang, R.M. Lin, H.C. Lin, M. Shiojiri, M.J. Chen, Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing. Sci. Rep. 7, 39717 (2017)CrossRefGoogle Scholar
  181. 181.
    F. Medjani, R. Sanjinés, G. Allidi, A. Karimi, Effect of substrate temperature and bias voltage on the crystallite orientation in RF magnetron sputtered AlN thin films. Thin Solid Films 515, 260–265 (2006)CrossRefGoogle Scholar
  182. 182.
    B. Abdallah et al., Deposition of AlN films by reactive sputtering: effect of radio frequency substrate bias. Thin Solid Films 515, 7105–7108 (2007)CrossRefGoogle Scholar
  183. 183.
    A.K. Chu, C.H. Chao, F.Z. Lee, H.L. Huang, Influences of bias voltage on the crystallographic orientation of AlN thin films prepared by long-distance magnetron sputtering. Thin Solid Films 429, 1–4 (2003)CrossRefGoogle Scholar
  184. 184.
    M.A. Dubois, P. Muralt, Stress and piezoelectric properties of aluminum nitride thin films deposited onto metal electrodes by pulsed direct current reactive sputtering. J. Appl. Phys. 89, 6389–6395 (2001)CrossRefGoogle Scholar
  185. 185.
    C. Lin, Y. Chen, K.-S. Kao, Two-step sputtered ZnO piezoelectric films for film bulk acoustic resonators. Appl. Phys. A Mater. Sci. Process. 89, 475–479 (2007)CrossRefGoogle Scholar
  186. 186.
    S.J. Chang, Y.K. Su, Y.P. Shei, High quality ZnO thin films on InP substrates prepared by radio frequency magnetron sputtering. I. Material study. J. Vac. Sci. Technol. A 13, 381–384 (1995)CrossRefGoogle Scholar
  187. 187.
    R.D. Klissurska et al., Effect of Nb doping on the microstructure of sol-gel derived PZT thin films. J. Am. Ceram. Soc. 78, 1513–1520 (1995)CrossRefGoogle Scholar
  188. 188.
    P. Muralt, J. Baborowski, N. Lederman, Piezoelectric micro-electro-mechanical systems with PbZrxTi1-xO3 thin films: integration and application issues, in Piezoelectric Materials and Devices, (EPFL Swiss Federal Institute of Technology, Lausanne, 2002), pp. 231–260Google Scholar
  189. 189.
    R.N. Castellano, L.G. Feinstein, Ion-beam deposition of thin films of ferroelectric PZT. J. Appl. Phys. 50, 4406–4411 (1979)CrossRefGoogle Scholar
  190. 190.
    M. Okada et al., Preparation of c-axis oriented PbTiO3 thin films byMOCVD. Ferroelectrics 91, 181–192 (1989)CrossRefGoogle Scholar
  191. 191.
    K.D. Budd, S.K. Dey, D.A. Payne, Sol-gel processing of PT, PZ, PZT, and PLZT thin films. Br. Ceram. Proc. 36, 107 (1985)Google Scholar
  192. 192.
    G. Fox, K. Suu, High temperature deposition of Pt/TiOx for bottom electrodes, US Patent 6,682,772, 27 Jan 2004Google Scholar
  193. 193.
    S. Hiboux, P. Muralt, N. Setter, Orientation and composition dependence of piezoelectric dielectric properties of sputtered Pb(ZrxTi1-x)O3 thin films. Mater. Res. Soc. Symp. Proc. 596, 499–504 (2000)CrossRefGoogle Scholar
  194. 194.
    R.W. Whatmore, Q. Zhang, Z. Huang, R.A. Dorey, Ferroelectric thin and thick films for microsystems. Mater. Sci. Semi-Solid Proc. 5, 65–76 (2003)CrossRefGoogle Scholar
  195. 195.
    Q.F. Zhou, E. Hong, R. Wolf, S. Trolier-McKinstry, Dielectric and piezoelectric properties of PZT 52/48 thick films with (100) and random crystallographic orientation, in Ferroelectric Thin Films IX, Material Research Society Proceedings, vol. 655, pp. CC11.7.1–CC11.7.6, 2001Google Scholar
  196. 196.
    N. Ledermann, P. Muralt, et al., {100}-textured, piezoelectric Pb(Zrx, Ti1−x)O3 thin films for MEMS: Integration, deposition and properties. Sens. Actuators A 105, 162–170 (2003)CrossRefGoogle Scholar
  197. 197.
    R.G. Polcawich, J.S. Pulskamp, Additive processes for piezoelectric materials; piezoelectric MEMS, Chapter 5, in MEMS Materials and Process Handbook, (Springer, New York, 2011)Google Scholar
  198. 198.
    C.B. Varlul et al., Wet chemical etching of AlN and InAlN in KOH solutions. J. Electrochem. Soc. 143, 3681–3684 (1996)CrossRefGoogle Scholar
  199. 199.
    D. Zhuang, J.H. Edgar, Wet etching of GaN, AlN, and SiC: a review. Mater. Sci. Eng. 48, 1–46 (2005)CrossRefGoogle Scholar
  200. 200.
    D. Chen, J. Wang, D. Xu, Y. Zhang, The influence of the AlN film texture on the wet chemical etching. J. Microelectron. 40, 15–19 (2009)CrossRefGoogle Scholar
  201. 201.
    S. Saravanan, E. Berenschot, G. Krijnen, M. Elwenspoek, A novel surface micromachining process to fabricate AlN unimorph suspensions and its application for RF resonators. Sens. Actuators A 130–131, 340–345 (2006)CrossRefGoogle Scholar
  202. 202.
    T.Y. Sheng, Z.Q. Yu, G.J. Collins, Disk hydrogen plasma assisted chemical vapor deposition of aluminum nitride. Appl. Phys. Lett. 52, 576–578 (1988)CrossRefGoogle Scholar
  203. 203.
    S.M. Tanner, V.V. Felmetsger, Microstructure and chemical wet etching characteristics of AlN films deposited by ac reactive magnetron sputtering. J. Vac. Sci. Technol. A 28, 69–76 (2010)CrossRefGoogle Scholar
  204. 204.
    M.J. Vellekoop, C.C.O. Visser, P.M. Sarro, et al., Compatibility of zinc oxide with silicon IC processing. Sens. Actuators A 23, 1027–1030 (1990)CrossRefGoogle Scholar
  205. 205.
    D. Devoe, Piezoelectric thin film micromechanical beam resonators. Sens. Actuators A 88, 263–272 (2001)CrossRefGoogle Scholar
  206. 206.
    S.S.J. Pearton, C.C.R. Abernathy, et al., Dry etching of thin-film InN, AIN and GaN. Semicond. Sci. Technol. 8, 310–312 (1993)CrossRefGoogle Scholar
  207. 207.
    R.J. Shul, G.A. Vawter, et al., Comparison of plasma etch techniques for III-V nitrides. Solid-State Electron. 42, 2259–2267 (1998)CrossRefGoogle Scholar
  208. 208.
    H. Cho, C.B. Vartuli, et al., Comparison of inductively coupled plasma Cl2 and Cl4/H2 etching of III-nitrides. J. Vac. Sci. Technol. A 16, 1631–1635 (1998)CrossRefGoogle Scholar
  209. 209.
    G.-K. Lee, J.-H. Moon, B.-T. Lee, Inductively coupled plasma reactive ion etching of ZnO using C2F6 and NF3-based gas mixtures. Semicond. Sci. Technol. 21, 971–974 (2006)CrossRefGoogle Scholar
  210. 210.
    S. Mancha, Chemical etching of thin film PLZT. Ferroelectrics 135, 131–137 (1992)CrossRefGoogle Scholar
  211. 211.
    R. Miller, J. Bernstein, A novel wet etch for patterning PZT thin films. Integr. Ferroelectr. 29, 225–231 (2000)CrossRefGoogle Scholar
  212. 212.
    D.P. Vijay, S.D. Desu, W. Pan, Reactive ion etching of lead zirconate titanate (PZT) thin film capacitors. J. Electrochem. Soc. 140, 2635–2539 (1993)CrossRefGoogle Scholar
  213. 213.
    W. Pan et al., Reactive ion etching of PZT and RuO2 films by environ-mentally safe gases. J. Mater. Res. 9, 2976–2980 (1994)CrossRefGoogle Scholar
  214. 214.
    J. Baborowski et al., Mechanisms of PZT thin film etching with ECR/RF reactor, Int. Ferroelectrics 31, 261–271 (2001)CrossRefGoogle Scholar
  215. 215.
    C.W. Chung, Reactive ion etching of Pb(ZrxTi1-x)O3 thin films in an inductively coupled plasma. J. Vac. Sci. Technol. B 16, 1894–1900 (1998)CrossRefGoogle Scholar
  216. 216.
    S. Koo, D. Kim, K. Kim, S. Song, C. Kim, Etching properties of Pb(ZrxTi1-x)O3lead–zirconate–titanate thin films in an inductively coupled plasma Cl2/Ar and BCl3/Ar gas chemistries. J. Vac. Sci. Technol. B 1622, 1519–1523 (2004)CrossRefGoogle Scholar
  217. 217.
    R.G. Polcawich, Design, fabrication, test, and evaluation of RF MEMS series switches using lead zirconate titanate (PZT) thin film actuators, Ph.D. Thesis, Pennsylvania State University, 2007Google Scholar
  218. 218.
    K. Zheng, J. Lu, J. Chu, A novel wet etching process of Pb(Zr,Ti)O3 thin films for applications in microelectromechanical system. J. Appl. Phys. 43, 3934–3937 (2004)CrossRefGoogle Scholar
  219. 219.
    T. Mineta, Y. Haga, Materials and process in shape memory alloys, Chapter 6, in MEMS Materials and Processes Handbook, (Springer, New York, 2011)Google Scholar
  220. 220.
    P. Krulevitch, A.P. Lee, P.B. Ramsey, J.C. Trevino, J. Hamilton, M.A. Northrup, Thin film shape memory alloy microactuators. J. Microelectromech. Syst. 5(4), 270–281 (1996)CrossRefGoogle Scholar
  221. 221.
    K. Kuribayashi, M. Yoshitake, S. Ogawa, Reversible SMA actuator for micron sized robot, in Proceedings of the IEEE Micro Electro Mechanical Systems. MEMS, Napa Valley, CA, USA, pp. 217–221, 1990Google Scholar
  222. 222.
    A.D. Johnson, Vacuum-deposited TiNi shape memory film: characterization and applications in microdevices. J. Micromech. Microeng. 1, 34–41 (1991)CrossRefGoogle Scholar
  223. 223.
    S. Miyazaki, A. Ishida, Martensitic transformation and shape memory behavior in sputter deposited TiNi-base thin films. Mater. Sci. Eng. A 273–275, 106–133 (1999)CrossRefGoogle Scholar
  224. 224.
    J.D. Busch, A.D. Johonson, A shape-memory properties in Ni-Ti sputter-deposited film. J. Appl. Phys. 68(12), 6224–6228 (1990)CrossRefGoogle Scholar
  225. 225.
    A. Ishida, S. Miyazaki, Microstructure and mechanical properties of sputter-deposited Ti-Ni alloy thin films. J. Eng. Mater. Technol. 121, 3–8 (2004)Google Scholar
  226. 226.
    Y. Nakamura, S. Nakamura, L. Buchaillot, M. Ataka, H. Fujita, Tow thin film shape memory alloy microactuators. Trans. IEE Jpn. 117-E(11), 554–559 (1997)Google Scholar
  227. 227.
    S. Miyazaki, K. Nomura, Development of perfect shape memory effect in sputter-deposited Ti-Ni thin films, in Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS-94), Oiso, Japan, pp. 176–181, 1994Google Scholar
  228. 228.
    K.R. Collen, A.B. Ellis, J.D. Busch, A.D. Johnson, Structural and electrical properties of titanium-nickel films deposited onto silicon substrates, ONR Technical Report UWIS/DC/TR-91/3Google Scholar
  229. 229.
    A. Ohta, S. Bhansali, I. Kishimoto, A. Umeda, Novel fabrication technique of TiNi shape memory alloy film using separate Ti and Ni targets. Sensors Actuators 86, 165–170 (2000)CrossRefGoogle Scholar
  230. 230.
    E. Makino, M. Uenoyama, T. Shibata, Flash evaporation of TiNi shape memory thin film for microactuators. Sens. Actuators A 71, 187–192 (1998)CrossRefGoogle Scholar
  231. 231.
    F.E. Wang, W.J. Buehler, S.J. Pickart, J. Appl. Phys. 36, 3232 (1965)CrossRefGoogle Scholar
  232. 232.
    T.W. Duering, K.N. Melton, D. Stockel, C.M. Wayman, Engineering Aspects of Shape Memory Alloys (Butterworth-Heinemann, London, 1990)Google Scholar
  233. 233.
    S. Nakamura, Y. Nakamura, M. Ataka, H. Fujita, A study on patterning method of TiNi shape memory thin film. Trans. IEE Jpn. 117-E(1), 27–32 (1997)Google Scholar
  234. 234.
    E. Makino, T. Mitsuya, T. Shibata, Micromachining of TiNi shape memory thin film for fabrication of micropump. Sensors Actuators A Phys. 79(3), 251 (2000)CrossRefGoogle Scholar
  235. 235.
    D. Stockel, Status and trends in shape memory technology, in Proceedings of Actuators’92, Bremen, Germany, pp. 79–84, 1992.Google Scholar
  236. 236.
    K. Otsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, 1998)Google Scholar
  237. 237.
    S. Miyazaki, T. Hashinaga, A. Ishida, Thin Solid Films 364, 281–282 (1996)Google Scholar
  238. 238.
    T.H. Nam, T. Saburi, K. Shimizu, Cu-content dependence of shape memory characteristics in Ti-Ni-Cu alloys. Mater. Trans. JIM 31, 959–967 (1990)CrossRefGoogle Scholar
  239. 239.
    D. Reynaerts, J. Peirs, H.V. Brussel, Shape memory micro-actuation for a gastro-intestinal intervention system. Sens. Actuators A 77(2), 157–166 (1999)CrossRefGoogle Scholar
  240. 240.
    T. Mineta, Electrochemical etching of NiTi shape memory alloy sheet using new electrolyte solutions. J. Micromech. Microeng. 14, 76–80 (2004)CrossRefGoogle Scholar
  241. 241.
    H. Kahn, W. Benard, M. Huff, A. Heuer, The TiNi shape-memory alloy and its application for MEMS. J. Micromech. Microeng. 8, 213–221 (1998)CrossRefGoogle Scholar
  242. 242.
    M. Huff, W. Benard, Thin-film titanium-nickel shape-memory alloy microfluidic devices, in Proceedings Third International Symposium Microstructures and Microfabricated Systems, Electrochemical Society Meeting, pp. 26–38, 1997Google Scholar
  243. 243.
    K. Nandakumar, A. Parr, M. Huff, S. Phillips, A smart SMA actuated microvalve with feedback control, in ASME MEMS, 1998Google Scholar
  244. 244.
    W.L. Benard, H. Kahn, M.A. Huff, TiNi shape-memory alloy actuated micropump with fluid isolation, in Smart Structures and Materials ‘97, Smart Electronics and MEMS, International Society for Optics and Photonics, pp. 156–164, 1997Google Scholar
  245. 245.
    W.L. Benard, H. Kahn, A.H. Heuer, M.A. Huff, A titanium nickel shape-memory alloy actuated micropump, in Proceedings of the 9th IEEE International Conference on Solid-State Sensors and Actuators, Transducers 97, vol. 1, Chicago, IL, pp. 361–364, 16–19 June 1997Google Scholar
  246. 246.
    W. Benard, H. Kahn, A. Heuer, M. Huff, Thin-film shape-memory alloy actuated micropumps. IEEE/ASME J. Microelectromech. Syst. 7(2), 245 (1998)CrossRefGoogle Scholar
  247. 247.
    B. Sutapan, M. Tabib-Azar, M. Huff, Applications of shape memory alloys in MOEMS devices and in optics, in Micromachining and Microfabrication, Microelectronic Structures and MEMS for Optical Processing IV, International Society for Optics and Photonics, pp. 223–232, 1998Google Scholar
  248. 248.
    B. Sutapan, M. Tabib-Azar, M. Huff, Applications of TiNi thin films shape-memory alloys in micro-opto-electro-mechanical systems. Sens. Actuators A Phys. 77(1), 34–38 (1999)CrossRefGoogle Scholar
  249. 249.
    B. Sutapan, M. Tabib-Azar, M. Huff, Applications of shape memory alloys in optics. J Appl Opt 37(28), 6811–6815Google Scholar
  250. 250.
    E.I. Cooper, C. Bonhôte, J. Heidmann, Y. Hsu, P. Kern, J.W. Lam, M. Ramasubramanian, N. Robertson, L.T. Romankiw, H. Xu, Recent developments in high-moment electroplated materials for recording heads. IBM J. Res. Dev. 49, 103–126 (2005)CrossRefGoogle Scholar
  251. 251.
    D.P. Arnold, N. Wang, Permanent magnets for MEMS. J. Microelectromech. Syst. 18, 1255–1266 (2009)CrossRefGoogle Scholar
  252. 252.
    M. Schlesinger, M. Paunovic, Modern Electroplating (Wiley, New York, 2000)Google Scholar
  253. 253.
    D.R. Crow, Principles and Applications of Electrochemistry (Stanley Thornes (Publishers) Ltd., Cheltenham, 1998)Google Scholar
  254. 254.
    A. Brenner, G.E. Riddell, Nickel plating on steel by chemical reduction, United States Bureau of Standards. J. Res. 37, 31–34 (1946)Google Scholar
  255. 255.
    G. Zangari, Electro-deposition of alloys and compounds in era of microelectronics and energy conversion. Coatings 5, 195–218 (2015)CrossRefGoogle Scholar
  256. 256.
    Copper Damascene Plating B. Brooks, Semitool Presentation at University of Utah. See: Retrieved Aug 2018
  257. 257.
    Datasheet on MA/BA6+ Mask and Bond Aligner for SussMicroTec. See: Accessed Sept 2018
  258. 258.
    Datasheet on Heidelberg Instruments, Model DWL 66+ system. See: Accessed Sept 2018
  259. 259.
    D. Radtke, U.D. Zeitner, Laser-lithography on non-planar surfaces. Opt. Express. Optical Society of America 15(3), 1168 (2007)Google Scholar
  260. 260.
    E. DiFabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, R. Barret, High efficiency multilevel zone plates for keV X-rays. Nature 401, 895–898 (1999)CrossRefGoogle Scholar
  261. 261.
    P. Ehbets, H.P. Herzig, D. Prongue, M.T. Gale, High-efficiency continuous surface-relief gratings for two-dimensional array generation. Opt. Lett. 17, 908–910 (1992)CrossRefGoogle Scholar
  262. 262.
    P. Yao, G.J. Schneider, D. Prather, E. Wetzel, D. O’Brein, Fabrication of three-dimensional photonic crystals with multilayer photolithography. Opt. Express 13, 2370–2376 (2005)CrossRefGoogle Scholar
  263. 263.
    Y. Olinger, P. Sixt, J.M. Stauffer, J.M. Mayor, P. Regnault, G. Voirin, One-step 3D shaping using a gray-tone mask for optical and microelectronic applications. Microelectron. Eng. 23, 449–454 (1994)CrossRefGoogle Scholar
  264. 264.
    V.P. Korolkov, A.I. Malyshev, A.G. Poleshchuck, V.V. Cherksshin, H.J. Tiziani, C. Pruss, T. Schoder, J. Westhauser, C. Wu, Fabrication of gray-scale masks and diffractive optical elements with LDW glass, in Proceedings of SPIE – Lithographic and Micromachining Techniques for Optical Component Fabrication, vol. 4440, pp. 73–84, 2001Google Scholar
  265. 265.
    Y. Chen, R.K. Kupka, F. Rousseaux, F. Carcenac, D. Decanini, M.F. Ravet, H. Launois, 50-nm x-ray lithography using synchrotron radiation. J. Vac. Sci. Technol. B 12, 3959–3964 (1994)CrossRefGoogle Scholar
  266. 266.
    W. Ehrfeld, P. Bley, F. Götz, P. Hagmann, D. Münchmeyer, J. Mohr, O.H. Moser, D. Münchmeyer, W. Schelb, D. Schmidt, E.W. Becker, Fabrication of microstructures using the LIGA process. Presented at Micro Robots and Teleoperators Workshop, IEEE, 1987Google Scholar
  267. 267.
    A.R. Shimkunas, P.E. Mauger, L.P. Bourget, R.S. Post, L. Smith, R.F. Davis, G.M. Wells, F. Cerrina, R.B. McIntosh, Advanced electron cyclotron resonance chemical vapor deposition SiC coatings and x-ray mask membranes. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 9, 3258 (1991)CrossRefGoogle Scholar
  268. 268.
    G.M. Wells, S. Palmer, F. Cerrina, A. Purdes, B. Gnade, Radiation stability of SiC and diamond membranes as potential x-ray lithography mask carriers. J. Vac. Sci. Technol. B 8(6), 1575–1578 (1990)CrossRefGoogle Scholar
  269. 269.
    V. Saile, U. Wallrabe, O. Tabata, G.K. Fedder, LIGA and Its Applications, Volume 7 of Advanced Micro and Nanosystems (Wiley-VCH, Weinheim, 2008)Google Scholar
  270. 270.
    J. Goettert, From Design to LiGA Polymer Chips: A Customer Experience, Presentation (Louisiana State University, Baton Rogue, 2005)Google Scholar
  271. 271.
    M. Gad-el-Hak, MEMS: Design and Fabrication, 2nd edn. (CRC Press, Boca Raton, 2006)Google Scholar
  272. 272.
    H. Guckel, Deep x-ray lithography for micromechanics and precision engineering. Rev. Sci. Instrum. 67, 3357 (1996)CrossRefGoogle Scholar
  273. 273.
    Y. Liu, P. Sheng, Modeling of X-ray fabrication of macromechanical structures. J. Manuf. Process. 4, 109 (2002)CrossRefGoogle Scholar
  274. 274.
    H. Guckel, T.R. Christenson, K.J. Skrobis, D.D. Denton, B. Choi, E.G. Lovell, J.W. Lee, S.S. Bajikar, T.W. Chapman, Deep X-ray and UV lithographies for micromechanics. Presented at Solid-State Sensor and Actuator Workshop. 4th Technical Digest, IEEE, 1990Google Scholar
  275. 275.
    M.A. McCord, M.J. Rooks, Electron Beam Lithography, PM39 (SPIE Publications, Bellingham, 1997)Google Scholar
  276. 276.
    N.P. Pham, T.L.M. Scholtes, R. Klerks, E. Boellaard, P.M. Sarro, J.N. Burghartz, Direct spray coating of photoresist- a new method for patterning 3-D structures, in Proceedings of EUROSENSORS 2002Google Scholar
  277. 277.
    V.G. Kutchoukov, Fabrication technology for through-wafer interconnects, PhD thesis, Delft 2002, ISBN 90-5166-897-XGoogle Scholar
  278. 278.
    P. Kersten, S. Bouwstra, J.W. Petersen, Photolithography on micromachined 3D surfaces using electrodeposited photoresists. Sensors Actuators A51, 51–54 (1995)CrossRefGoogle Scholar
  279. 279.
    E. Alling, C. Stauffer, Image reversal of positive photoresist, in SPIE Proceedings, 539 Advances in Resist Technology & Processing, 1985Google Scholar
  280. 280.
    M.L. Long, J. Newman, Image reversal techniques with standard positive photoresist. Proc. Soc. Photo Opt. Instrum. Eng. 469, 189–193 (1984)Google Scholar
  281. 281.
    M. Madou, Fundamentals of Microfabrication and Nanotechnology (CRC Press, Boca Raton, 2011)Google Scholar
  282. 282.
    S. Sze, Semiconductor Sensors (Wiley, New York, 1995)Google Scholar
  283. 283.
    M. Gad-el-Hak, The MEMS Handbook (CRC Press, Boca Raton, 2002)zbMATHGoogle Scholar
  284. 284.
    D.W. Burns, MEMS wet etch processes and procedures, in MEMS Materials and Processes Handbook, (Springer, New York, 2011)Google Scholar
  285. 285.
    W.K. Zwicker, S.K. Kurtz, Anisotropic etching of silicon using electrochemical displacement reactions, in Semiconductor Silicon, ed. by H. R. Huff, R. R. Burgess, (Electrochemical Society Press, Princeton, 1973), p. 315Google Scholar
  286. 286.
    M. Huff, A thermally isolated microstructure for gas sensing applications, S.M. thesis, Dept. EECS and MS&E, MIT, 1988Google Scholar
  287. 287.
    G.-Z. Yan, P.C.H. Chan, I.-M. Hsing, R.K. Sharma, J.K.O. Sin, An improved TMAH Si-etching solution without attacking exposed aluminum, in IEEE Proceedings 13th Annual International Conference on MEMS, Miyazaki, JP, Jan. 2000Google Scholar
  288. 288.
    H. Seidel, L. Csepregi, A. Heuberger, H. Baumgartel, Anisotropic etching of crystalline silicon in alkaline solutions, I. Orientation dependence and behavior of passivation layers. J. Electrochem. Soc. 137(11), 3612–3626 (1990)CrossRefGoogle Scholar
  289. 289.
    H. Seidel, L. Csepregi, A. Heuberger, H. Baumgartel, Anisotropic etching of crystalline silicon in alkaline solutions, II. Influence of dopants. J. Electrochem. Soc. 137(11), 3626–3632 (1990)CrossRefGoogle Scholar
  290. 290.
    B. Kloech, S.D. Collins, N.F. de Rooij, R.L. Smith, Study of electrochemical etch-stop for high precision thickness control of silicon membranes. IEEE Trans. Electron Devices ED-36, 663 (1989)CrossRefGoogle Scholar
  291. 291.
    V.M. McNeil, S.S. Wang, K.Y. Ng, M.A. Schmidt, An investigation of the electrochemical etching of (100) silicon in CsOH and KOH, in Tech. Dig. IEEE Solid-State Sensor and Actuator Workshop, Hilton Head, SC, p. 92, 1990Google Scholar
  292. 292.
    G.-S. Chung, Anisotropic etching and electrochemical etch-stop properties of silicon in TMAH:IPA:Pyrazine solutions. Met. Mater. Int. 7(6), 643 (2001)CrossRefGoogle Scholar
  293. 293.
    P.B. Chu, J.T. Chen, R. Yeh, G. Lin, C.P. Hunag, B.A. Warneke, K.S.J. Pister, in Proceedings of international solid state sensors and actuators conference (Transducers’ 97), p. 665, 1997Google Scholar
  294. 294.
    F. Larmar, P. Schilp, Method of anisotropically etching of silicon, German Patent DE 4,241,045, 1994Google Scholar
  295. 295.
    J. Bhardwaj, H. Ashraf, Advanced silicon etching using high density plasmas, in Proc. SPIE, Micromachining and Microfabrication Process Technology Symp., vol. 2639, Austin, TX, p. 224, 23–24 Oct 1995Google Scholar
  296. 296.
    M.D. Henry, C. Welch, A. Scherer, Techniques of cryogenic reactive ion etching in silicon for fabrication of sensors. J. Vac. Sci. Technol. A 27(5), 1211 (2009)CrossRefGoogle Scholar
  297. 297.
    J. Yeom, Y. Wu, J.C. Selby, M.A. Shannon, Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect. J. Vac. Sci. Technol. B.: Microelectron. Nanometer Struct. Process. Meas. Phenom. 23, 2319 (2005)CrossRefGoogle Scholar
  298. 298.
    T.F. Hill, Analysis of DRIE uniformity for microelectromechanical systems, S.M. Thesis, MIT, Department EECS, May 2004Google Scholar
  299. 299.
    B.H.W.S. De Jong, R.G.C. Beerkens, P.A. Van Nijnatten, Glass, in Ullmann’s Encyclopedia of Industrial Chemistry, (Wiley-VCH, Weinheim, 2000)Google Scholar
  300. 300.
    S. Wang et al., Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology. Appl. Opt. 44(21), 4429–4434 (2005)CrossRefGoogle Scholar
  301. 301.
    M. Pedersen, M. Huff, Plasma etching of deep, high-aspect ratio features into fused silica. IEEE J. MEMS (JMEMS) 26(2), 448 (2017)CrossRefGoogle Scholar
  302. 302.
    M. Pedersen, M. Huff, Based on research results that have not yet been reported.Google Scholar
  303. 303.
    M. Pedersen, M. Huff, Across substrate lateral dimensional repeatability using a highly-anisotropic deep etch process on fused silica material layers. IEEE J. MEMS (JMEMS) 27(1), 31 (2018)CrossRefGoogle Scholar
  304. 304.
    M. Ozgur, M. Huff, Plasma etching of deep, high-aspect ratio features into silicon carbide (SiC). IEEE J. MEMS (JMEMS) 26(2), 456 (2017)CrossRefGoogle Scholar
  305. 305.
    M. Ozgur, M. Huff, Based on research results that have not yet been reported.Google Scholar
  306. 306.
    N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, M. Elwenspoek, Stiction in surface micromachining. J. Micromech. Microeng. 6, 385–397 (1996)CrossRefGoogle Scholar
  307. 307.
    M. Huff, A.F. Bart, P. Lin, MEMS process integration, Chapter 14, in MEMS Materials and Processes Handbook, (Springer, New York, 2011)Google Scholar
  308. 308.
    M. Huff, M.A. Schmidt, Fabrication, packaging, and testing of a wafer-bonded microvalve, in IEEE Solid-State Sensor and Actuator Meeting, Hilton Head, SC, June 22–25, 1992Google Scholar
  309. 309.
    M. Huff, Silicon micromachined wafer-bonded valves, Ph.D. Thesis, MIT, Department EECS, Feb 1993Google Scholar
  310. 310.
    G.-L. Sun et al., Cool plasma activated surface in silicon wafer direct bonding technology. J. Phys. 9, 79–82 (1988)Google Scholar
  311. 311.
    Y. Kanda et al., The mechanism of field-assisting silicon-glass bonding. Sens. Actuators A21–A23, 939 (1992)Google Scholar
  312. 312.
    A.L. Tiensuu, J.A. Schweitz, S. Johansson, In situ investigation of precise high strength micro assembly using Au-Si eutectic bonding, in 8th International Conference on Solid-State Sensors and Actuators, Transducers 95, Stockholm, Sweden, p. 236, June 1995Google Scholar
  313. 313.
    C. den Besten, R.E.G. van Hal, J. Munoz, P. Bergveld, Polymer bonding of micromachined silicon structures, in Proceedings of the IEEE Micro Electro Mechanical Systems, MEMS 92, Travemunde, Germany, p. 104, 1992Google Scholar
  314. 314.
    S.J. Cunningham, M. Kupnik, Wafer bonding, Chapter 11, in MEMS Materials and Processes Handbook, (Springer, New York, 2011)Google Scholar
  315. 315.
    W. Ehrfeld, P. Bley, F. Gotz, P. Hagmann, A. Maner, J. Mohr, H.O. Moser, D. Munchmeyer, W. Schelb, D. Schmidt, E.W. Becker, Fabrication of microstructures using the LIGA process, in Proc. IEEE Micro Robots and Teleoperators Workshop, Hyannis, MA, Nov 1987Google Scholar
  316. 316.
    W. Menz, W. Bacher, M. Harmening, A. Michel, The LIGA technique – a novel concept for microstructures and the combination with Si-technologies by injection molding, in IEEE Workshop on Micro Electro Mechanical Systems, MEMS 91, p. 69, 1991Google Scholar
  317. 317.
    M. Huff, System and method for precision fabrication of micro- and nano-devices and structures, United States Patent No. US8790534B2, granted 29 July 2014Google Scholar
  318. 318.
    A.A. Tseng, Recent developments in micromilling using focused ion beam technology. J. Micromech. Microeng. 14, R15–R34 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Michael Huff
    • 1
  1. 1.Corporation for National Research InitiativesMEMS & Nanotechnology ExchangeRestonUSA

Personalised recommendations