Microsystems Manufacturing Methods: Integrated Circuit Processing Steps

  • Michael Huff
Part of the Microsystems and Nanosystems book series (MICRONANO)


A general overview of the processing steps commonly used in integrated circuit (IC) manufacturing is provided in Chap. 3. How each processing step is performed, the equipment commonly used, and guidance on the expected dimensional variations when performing the processing step are given. The subsequent chapter will focus on specialized processing steps used in MEMS fabrication. The major categories of processing steps used in IC fabrication include depositions or growths; lithography; etching; impurity doping; and metrology. Depending on the process sequence involved, there may also be other types of processing steps in the sequence as well such as planarization, rapid thermal anneals, and others. A number of these processing steps will be performed sequentially to implement the ICs, and some will be repeated multiple times. Once the fabrication is completed, the wafers will usually go through a series of tests to determine their functionality and performance. This is discussed in more detail in Chaps. 7, 8, and 9. Table 3.4 provides a compilation of the expected “best-case” dimensional variations for each of the processing steps reviewed in this chapter as a quick reference.


Thin-film growth Thin-film deposition CVD ALD PVD Thermal diffusion Ion implantation Photolithography RTA CMP RIE Cleans 


  1. 1.
    C.Y. Change, S.M. Sze, VLSI Technology, ULSI Technology (McGraw Hill, New York, 1996)Google Scholar
  2. 2.
    S. Wolf, R.N. Tauber, Silicon Processing for the VLSI Era, Volume 1- Process Technology (Lattice Press, Sunset Beach, 1986)Google Scholar
  3. 3.
    S.A. Cambell, The Science and Engineering of Microelectronic Fabrication (Oxford Press, New York, 1996)Google Scholar
  4. 4.
    P. van Zant, Microchip Fabrication (McGraw Hill, New York, 2000)Google Scholar
  5. 5.
    S.M. Sze, Physics of Semiconductor Devices (Wiley Inter-science, New York, 1981)Google Scholar
  6. 6.
    B.E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon. IEEE Trans. Electron Devices ED-27, 606 (1980)CrossRefGoogle Scholar
  7. 7.
    E.H. Nicollian, A. Geotzberger, Bell Syst. Tech. J. 46, 1055 (1979)CrossRefGoogle Scholar
  8. 8.
    R.R. Razouk, B.E. Deal, Extended abstracts of the May 1979 Electrochemical Soc. Meeting, Abstract 135. J. Electrochem. Soc. 126, 1573 (1979)CrossRefGoogle Scholar
  9. 9.
    B.E. Deal, A.S. Grove, General relationship for the thermal oxidation in steam and oxygen. J. Appl. Phys. 36, 3770 (1965)CrossRefGoogle Scholar
  10. 10.
    B.E. Deal, J. Electrochem. Soc. 125, 576 (1978)CrossRefGoogle Scholar
  11. 11.
    J. Spiegelman, Improved oxide growth rate and uniformity through new steam delivery method, RASIRC Publication Tech Notes. See:
  12. 12.
    A. Sherman, Chemical Vapor Deposition for Microelectronics: Principles, Technology, and Applications (Noyes, Park Ridge, 1987)Google Scholar
  13. 13.
    A.S. Grove, Mass transfer in semiconductor technology. Ind. Eng. Chem. 58, 48 (1966)CrossRefGoogle Scholar
  14. 14.
    B. J. Baliga (ed.), Epitaxial Silicon Technology (Academic Press, Orlando, 1986)Google Scholar
  15. 15.
    R.A. Levy, K. Nassau, Viscous behavior of phosphosilicate and borophosphosilicate glasses in VLSI processing. Solid State Technol. 29, 123 (1980)Google Scholar
  16. 16.
    W. Kern, G.L. Schnable, CVD BPSG for Si devices. RCA Rev. 43, 423 (1982)Google Scholar
  17. 17.
    D.A.P. Bulla, N.I. Morimoto, Deposition of thick TEOS PECVD silicon oxide layers for integrated optical waveguide applications. Thin Solid Films 334, 60 (1998)CrossRefGoogle Scholar
  18. 18.
    K. Seshan (ed.), Thin Film Deposition: Processes and Technologies, 2nd edn. (Noyes Publications, William Andrew Publishing, Norwich, 2002)Google Scholar
  19. 19.
    R.S. Rosler, Low pressure CVD production processes for poly, nitride, and oxide. Solid State Technol. 20(4), 63 (1977)Google Scholar
  20. 20.
    H.O. Pierson, O. Hugh, Handbook of Chemical Vapor Deposition (CVD) (William Andrew Publishing, Norwich, 1992)Google Scholar
  21. 21.
    P. Temple-Boyer, C. Rossi, E. Saint-Etienne, E. Scheid, Residual stress in low pressure vapor deposition SiNx films deposited from silane and ammonia. J. Vac. Sci. Technol. A 16(4), 2003 (1998)CrossRefGoogle Scholar
  22. 22.
    P.J. Frencha, P.M. Sarrob, R. Malleeb, E.J.M. Fakkelddijc, R.F. Wolffenbuttela, Sensors Actuators A Phys. 58(2), 149 (1997)CrossRefGoogle Scholar
  23. 23.
    D.V. Morgan, K. Board, An Introduction to Semiconductor Microtechnology, 2nd edn. (Wiley, West Sussex, England, 1991)Google Scholar
  24. 24.
    Gemini-2 Product Brochure, Gemini Research, Inc., Fremont, CAGoogle Scholar
  25. 25.
    R. Iscoff, Hotwall LPCVD reactors: Considering the choices. Semicond. Int., 60 (1991)Google Scholar
  26. 26.
    A.C. Adams, Dielectric and polysilicon film deposition, in VLSI Technology, ed. by S. M. Sze, (McGraw Hill, New York, 1988)Google Scholar
  27. 27.
    T.I. Kamins, Structure and properties of LPCVD silicon films. J. Electrochem. Soc. 127, 686 (1980)CrossRefGoogle Scholar
  28. 28.
    R.D. Compton, PECVD: A versatile technology. Semicond. Int., 60 (1992)Google Scholar
  29. 29.
    S. Nguyen, S. Burton, J.D. Mackenzie, The variation of physical properties of plasma-deposited silicon nitride and oxynitride and their compositions. J. Electrochem. Soc. 131, 2348 (1984)CrossRefGoogle Scholar
  30. 30.
    R.L. Purunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 97(12) (2005)Google Scholar
  31. 31.
    S.M. George, Atomic layer deposition: An overview. Chem. Rev. 110, 111–131 (2010)CrossRefGoogle Scholar
  32. 32.
    H. Kim, Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing. J. Vac. Sci. Technol. A 21(6), 2231 (2003)CrossRefGoogle Scholar
  33. 33.
    A.J.M. Mackus, D. Garcia-Alonso, H.C.M. Knoops, A.A. Bol, W.M.M. Kessels, Room-temperature atomic layer deposition of platinum. Chem. Mater. 25(9), 1769–1774 (2013)CrossRefGoogle Scholar
  34. 34.
    S.E. Potts, W.M.M. Kessels, Energy-enhanced atomic layer deposition for more process and precursor versatility. Coord. Chem. Rev. 257(23–24), 3254–3270 (2013)CrossRefGoogle Scholar
  35. 35.
    H.C.M. Knoops, E.M.J. Braeken, K. de Peuter, S.E. Potts, S. Haukka, V. Pore, W.M.M. Kessels, Atomic layer deposition of silicon nitride from bis( -butylamino)silane and N plasma. ACS Appl. Mater. Interfaces 7(35), 19857 (2015)CrossRefGoogle Scholar
  36. 36.
    E. Langereis, H.C.M. Knoops, A.J.M. Mackus, F. Roozeboom, M.C.M. van de Sanden, W.M.M. Kessels, Synthesis and characterization of low-resistivity TaNx films by remote plasma atomic layer deposition. J. Appl. Phys. 102(8), 083517 (2007)CrossRefGoogle Scholar
  37. 37.
    G.N. Parsons, J.W. Elam, S.M. George, S. Haukka, H. Jeon, W.M.M. Kessels, M. Leskelä, P. Poodt, M. Ritala, History of atomic layer deposition and its relationship with the American Vacuum Society. J. Vac. Sci. Technol. A 31(5), 050818 (2013)CrossRefGoogle Scholar
  38. 38.
    D. Turakhia, Atomic Layer Deposition-1, growth rate and uniformity of Al2O3, Tool Data. Paper 5. See:
  39. 39.
    E. Jia, C. Zhou, W. Wang, Uniformity and passivation research of Al2O3 film on silicon substrate prepared by plasma-enhanced atom layer deposition. Nanoscale Res. Lett. 10, 129 (2015)CrossRefGoogle Scholar
  40. 40.
    R. Giang, Vacuum evaporation, in Handbook of Thin Film Technology, ed. by L. Maissel, R. Giang, (McGraw Hill, New York, 1970)Google Scholar
  41. 41.
    R.J. Hill, Physical Vapor Deposition (Temescal, Berkeley, 1976)Google Scholar
  42. 42.
    M. Ohring, The Materials Science of Thin Films (Academic Press, London, 1992)zbMATHGoogle Scholar
  43. 43.
    G.K. Werner, G.S. Anderson, The nature of physical sputtering, in Handbook of Thin Films, ed. by L. I. Maissel, R. Glang, (McGraw Hill, New York, 1970)Google Scholar
  44. 44.
    J.L. Kurt, System for sputtering uniform optical coatings on flat and curved surfaces without masks, Nov 2016, see:
  45. 45.
    P.G. Shewmon, Diffusion in Solids (McGraw Hill, New York, 1963)Google Scholar
  46. 46.
    K. Taniguchi, K. Kurosawa, M. Kashiwagi, Oxidation enhanced diffusion of boron and phosphorus in <100> silicon. J. Electrochem. Soc. 127, 2243 (1980)CrossRefGoogle Scholar
  47. 47.
    C.J. Coe, The lateral diffusion of boron in polycrystalline silicon and its influence on fabrication of sub-micron MOS. Solid State Electron. 20, 985 (1977)CrossRefGoogle Scholar
  48. 48.
    B. Swaminathan, K.C. Saraswat, R.W. Dulton, T.I. Kamins, Diffusion of arsenic in polycrystalline silicon. Appl. Phys. Lett. 40, 795 (1980)CrossRefGoogle Scholar
  49. 49.
    S.M. Hu, S. Schmidt, Interaction in sequential diffusion process in a semiconductor. Phys. Rev. 107, 2 (1957)Google Scholar
  50. 50.
    G. Deanaley, J.H. Freeman, R.S. Nelson, J. Stephen, Ion Implantation (New Holland, Amsterdam, 1973)Google Scholar
  51. 51.
    J.W. Mayer, L. Ericksone, J.A. Davies, Ion Implantation in Semiconductors, Silicon and Germanium (Academic Press, New York, 1970)Google Scholar
  52. 52.
    J.F. Gibbons, Ion implantation in semiconductors – Part 1, range distribution theory and experiments. Proc. IEEE 56, 295 (1968)CrossRefGoogle Scholar
  53. 53.
    M.I. Current, W.A. Keenan, A performance survey of production ion implanters. Solid State Technol., 139 (1985)Google Scholar
  54. 54.
    V. Bakshi, EUV Lithography, SPIE Press Book, vol. PM178, (2008)Google Scholar
  55. 55.
    Y. Vladimirsky, Chapter 10: Lithography, in Vacuum Ultraviolet Spectroscopy II, ed. by J. A. Samson, D. L. Ederer, (Academic Press, Cambridge, 1998), pp. 205–223Google Scholar
  56. 56.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-Nanometer resolution. Science 272(5258), 85–87 (1996)CrossRefGoogle Scholar
  57. 57.
    B.W. Smith, Y. Fan, M. Slocum, L. Zavyalova, 25nm immersion lithography at a 193 nm wavelength, Proceedings, SPIE, (2005)Google Scholar
  58. 58.
    J. Burnett, High-index materials for UV lithography optics, Frontiers in Optics, OSA Technical Digest, Optical Society of America, (2006)Google Scholar
  59. 59.
    X. Hua et al., J. Vac. Sci. Technol. B 24, 1850–1858 (2006)CrossRefGoogle Scholar
  60. 60.
    W.H. Arnold, Towards 3nm overlay and critical dimension uniformity: An integrated error budget for double patterning lithography. Proc. SPIE 6924 (2008)Google Scholar
  61. 61.
  62. 62.
    Y.K. Kim, et al., Lithography focus/exposure control and corrections to improve CDU at post etch step, Proc. of SPIE Vol. 6924, (2014)Google Scholar
  63. 63.
    W.S. Yoo, T. Fukada, T. Setokubo, K. Aizawa, J. Yamamoto, R. Komatsubra, Rapid thermal implant annealing using Cold Wall and Hot Wall systems. Proc. Electrochem. Soc. 2002-11, 21 (2002)Google Scholar
  64. 64.
    C. Mau, Control of wafer-scale non-uniformity in chemical-mechanical planarization by face-up polishing, S.M Thesis, MIT, See:, (2008)
  65. 65.
    J. Karttunen, J. Kiihamaki, S. Franssila, Loading effects in deep silicon etching. Proc. SPIE 4174, 90 (2000)CrossRefGoogle Scholar
  66. 66.
    S.L. Lai, D. Johnson, R. Westerman, Aspect ratio dependent etching lag reduction in deep silicon etch processes. J.. Vac. Sci. Technol. A 24(4), 1283 (2006)CrossRefGoogle Scholar
  67. 67.
  68. 68.
    H.H. Gato, I. Kalinovski, K. Mohamed, Photoresist strip method for low-k dielectrics, USPTO patent, patent no. 8058178 B1, Nov 15, 2011Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Michael Huff
    • 1
  1. 1.Corporation for National Research InitiativesMEMS & Nanotechnology ExchangeRestonUSA

Personalised recommendations