Skip to main content

Maass Wave Forms of Real Weight

  • Chapter
  • First Online:
On the Theory of Maass Wave Forms

Part of the book series: Universitext ((UTX))

  • 925 Accesses

Abstract

In this chapter, we introduce Maass wave/cusp forms of real weight on subgroups of finite index in the full modular group with compatible multiplier systems. After introducing multiplier systems and the unitary automorphic factor and discussing the hyperbolic Laplace operator and Maass operators, we define Maass waveforms. We then use Hecke operators in the special case where the Maass waveform is of weight 0 and trivial multiplier system on the full group. We conclude the chapter by mentioning some spectral theory for the Laplace operator and its Friedrichs extension and discuss briefly Selberg’s conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Bers, F. John, M. Schechter, Partial Differential Equations. Lectures in Applied Mathematics, vol. 3 (Interscience Publishers, Geneva, 1964). ISBN 978-0-8218-0049-2

    Google Scholar 

  2. A.R. Booker, A. Strömbergsson, A. Venkatesh, Effective computation of Maass cusp forms. Int. Math. Res. Not. 2006, 71281. https://doi.org/10.1155/IMRN/2006/71281

  3. A. Borel, Automorphic Forms on \(SL_2(\mathbb {R})\) (Cambridge University Press, Cambridge, 1997). ISBN 978-0511896064. https://doi.org/10.1017/CBO9780511896064

  4. R.W. Bruggeman, Modular forms of varying weight. I. Math. Z. 190(4), 477–495 (1985). MR808915. http://www.ams.org/mathscinet-getitem?mr=808915; https://doi.org/10.1007/BF01214747

  5. R.W. Bruggeman, Families of Automorphic Forms. Monographs in Mathematics (Birkhäuser Boston Inc., Boston, MA, 1994). ISBN 3-7643-5046-6

    Google Scholar 

  6. D. Bump, Automorphic Forms and Representations. Cambridge Studies in Advanced Mathematics, vol. 55 (Cambridge University Press, Cambridge, 1997). ISBN 0-521-55098-X

    Google Scholar 

  7. D. Bump, J.W. Cogdell, E. de Shalit, D. Gaitsgory, E. Kowalski, S.S. Kudla, An Introduction to the Langlands Program (Birkhäuser Boston, Cambridge, 2004). ISBN 978-0-8176-3211-3. https://doi.org/10.1007/978-0-8176-8226-2

    Book  Google Scholar 

  8. Encyclopedia of Mathematics (2013). http://www.encyclopediaofmath.org/

  9. S.S. Gelbart, An elementary introduction to the Langlands program. Bull. Am. Math. Soc. (N.S.) 10(2), 177–219 (1984)

    Google Scholar 

  10. A. Good, Cusp forms and eigenfunctions of the Laplacian. Math. Ann. 255(4), 523–548 (1984). https://doi.org/10.1007/BF01451932

    Article  MathSciNet  Google Scholar 

  11. D.A. Hejhal, The Selberg trace formula and the Riemann zeta function. Duke Math. J. 43(3) (1976), 441–482. https://doi.org/10.1215/S0012-7094-76-04338-6

    Article  MathSciNet  Google Scholar 

  12. D.A. Hejhal, The Selberg Trace Formula for PSL(2, R), Vol. 2. Lecture Notes in Mathematics, vol. 1001 (Springer, Berlin, 1983). ISBN 3-540-12323-7

    Google Scholar 

  13. M.N. Huxley, Scattering matrices for congruence subgroups, in Modular Forms (Durham, 1983). Ellis Horwood Series in Mathematics and its Applications: Statistics and Operational Research (Horwood, Chichester, 1984), pp. 141–156. MR803366. http://www.ams.org/mathscinet-getitem?mr=803366

  14. H. Iwaniec, Topics in Classical Automorphic Forms. Graduate Studies in Mathematics, vol. 17 (American Mathematical Society, Providence, RI, 1997). ISBN 0-8218-0777-3. https://doi.org/10.1090/gsm/017

  15. H. Iwaniec, Spectral Methods of Automorphic Forms. Graduate Studies in Mathematics, vol. 53, 2nd edn. (American Mathematical Society, Providence, RI); Revista Matemática Iberoamericana, Madrid, 2002. ISBN 0-8218-3160-7. https://doi.org/10.1090/gsm/053

  16. T. Kato, Perturbation Theory for Linear Operators. Reprint of the 1980 edition. Classics in Mathematics (Springer, Berlin, 1995). ISBN 3-540-58661-X

    Google Scholar 

  17. T. Kubota Elementary Theory of Eisenstein Series (Kodansha Ltd., Tokyo/Wiley, New York, 1973)

    Google Scholar 

  18. S. Lang, SL2(R) (Springer, New York, 1985). Corrected second printing, 1998. ISBN 0-387-96198-4

    Google Scholar 

  19. R.P. Langlands, Problems in the theory of automorphic forms, in Lectures in Modern Analysis and Applications, III. Lecture Notes in Mathematics, vol. 170 (Springer, New York, 1970), pp. 18–61. ISBN 978-3-540-05284-5. https://doi.org/10.1007/BFb0079065

  20. P.D. Lax, R.S. Phillips, Scattering Theory for Automorphic Functions. Annals of Mathematics Studies, vol. 87 (Princeton University Press, Princeton, NJ, 1976). ISBN 0-691-08179-4

    Google Scholar 

  21. The LMFDB Collaboration, The L-Functions and Modular Forms Database (2019). http://www.lmfdb.org. Accessed 4 Apr 2020

  22. W. Luo, Z. Rudnick, P. Sarnak, On Selberg’s eigenvalue conjecture. Geom. Funct. Anal. 5(2), 387–401 (1995). https://doi.org/10.1007/BF01895672

    Article  MathSciNet  Google Scholar 

  23. H. Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann. 121, 141–183 (1949). https://doi.org/10.1007/BF01329622

    Article  MathSciNet  Google Scholar 

  24. H. Maass, Lectures on Modular Functions of One Complex Variable, 2nd edn. (Tata Institute of Fundamental Research, Bombay, 1983). http://www.math.tifr.res.in/~publ/ln/tifr29.pdf

  25. W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics. 3rd edn. Die Grundlehren der mathematischen Wissenschaften, vol. 52 (Springer, New York, 1966). MR0232968. http://www.ams.org/mathscinet-getitem?mr=232968

  26. Ju.I. Manin, Periods of cusp forms, and p-adic Hecke series. Mat. Sb. (N. Ser.) 92(134), 378–401 (1973). English translation appeared in: Math. USSR-Sb. 21(3), 371–393 (1973). MR345909. http://www.ams.org/mathscinet-getitem?mr=345909

  27. T. Mühlenbruch, Systems of automorphic forms and period functions. Ph.D. Thesis, Utrecht University, 2003

    Google Scholar 

  28. T. Mühlenbruch, W. Raji, Generalized Maass wave forms. Proc. Am. Math. Soc. 141, 1143–1158 (2013)

    Article  MathSciNet  Google Scholar 

  29. NIST Digital Library of Mathematical Functions. Version 1.0.8. Release date 25 April 2014. https://dlmf.nist.gov/

  30. L. Pukánszky, The Plancherel formula for the universal covering group of SL(R, 2). Math. Ann. 156, 96–143 (1964)

    Article  MathSciNet  Google Scholar 

  31. W. Roelcke, Automorphe formen in der hyperbolishce Ebene, I. Math. Ann. 167, 292–337 (1966)

    Article  MathSciNet  Google Scholar 

  32. P. Sarnak, Selberg’s eigenvalue conjecture. Not. Am. Math. Soc. 42, 1272–1277 (1995)

    MathSciNet  MATH  Google Scholar 

  33. A. Selberg, On the estimation of Fourier coefficients of modular forms, in Theory of Numbers, ed. by A.L. Whiteman. Proceedings of Symposia in Pure Mathematics VIII (American Mathematical Society, Providence, RI, 1965), pp. 1–15. ISBN 978-0-8218-1408-6. MR0182610. http://www.ams.org/mathscinet-getitem?mr=0182610

  34. L.J. Slater, Confluent Hypergeometric Functions (Cambridge University Press, New York, 1960). MR107026. http://www.ams.org/mathscinet-getitem?mr=107026

    Google Scholar 

  35. F. Strömberg, Computational aspects of Maass waveforms. PhD-thesis, Uppsala Universitet, 2005. ISBN 91-506-1794-X. URN: urn:nbn:se:uu:diva-4778: http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Auu%3Adiva-4778. DiVA:diva2:165722: http://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A165722

  36. F. Strömberg, Hecke operators for Maass waveforms on \(PSL(2,{\mathbb {Z}})\) with integer weight and eta multiplier. Int. Math. Res. Not. 2007 (2007). https://doi.org/10.1093/imrn/rnm062

  37. A. Terras, Harmonic Analysis on Symmetric Spaces and Applications, I (Springer, New York, 1985)

    Book  Google Scholar 

  38. A. Terras, Harmonic Analysis and Symmetric Spaces and Applications, II (Springer, Berlin, 1988)

    Book  Google Scholar 

  39. H. Then, Maass cusp forms for large eigenvalues. Math. Comp. 74, 363–381 (2005). https://doi.org/10.1090/S0025-5718-04-01658-8

    Article  MathSciNet  Google Scholar 

  40. A. Venkov, Spectral Theory of Automorphic Functions and Its Applications. Mathematics and its Applications (Soviet Series), vol. 51 (Kluwer Academic Publishers Group, Dordrecht, 1990). ISBN 0-7923-0487-X. https://doi.org/10.1007/978-94-009-1892-4

  41. E. Wirtinger, Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen. Math. Ann. 97, 357–375 (1926, in German). https://doi.org/10.1007/BF01447872

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mühlenbruch, T., Raji, W. (2020). Maass Wave Forms of Real Weight. In: On the Theory of Maass Wave Forms. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-030-40475-8_3

Download citation

Publish with us

Policies and ethics