Skip to main content

Polymer Macromolecules to Polymeric Nanostructures: Efficient Antibacterial Candidates

  • Chapter
  • First Online:
Nanostructures for Antimicrobial and Antibiofilm Applications

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Microbes pose a serious threat to life among human beings due to numerous infectious diseases. Though there is significant progress in the development of effective antimicrobial drugs, many infectious diseases are still difficult to treat. Polymers render a potential antimicrobial strategy to combat pathogens and gained a considerable attention in the recent past. Polyamine compounds are familiar about their vitality in many biological processes. Conspicuously, polyethyleneimine (PEI) as a polymeric chelating agent draws advantages such as high water solubility, modulation of functional groups, reliable molecular weight and physico-chemical stabilities. As reactive amino groups are abundant, a wide range of chemically modified cations with desirable properties make PEI remarkable. PEI offers an effective antimicrobial property, thanks to the hydrophobicity and positive charge density potentiated by alkylation. N-alkyl-substituted PEI immobilized over various knitted textiles showed evidence of strong bactericidal activity against a variety of airborne bacteria. It has also been realized that the molecular weight of polyethyleneimine and the antimicrobial activity are directly proportional to each other. The structure-activity relationship (SAR) plays a compelling role in comprehending the enhanced antimicrobial activity of linear and branched PEIs. In accordance with the above details, the present chapter focuses on the synthesis, characterization and antimicrobial applications of certain polymers, polymer metal complexes and nanopolymer materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archer RD (2001) Inorganic and organometallic polymers. Wiley-VCH, Inc., New York, USA

    Book  Google Scholar 

  • Beyth N, Yudovin Farber I, Bahir R, Domb AJ, Weiss EI (2006) Antibacterial activity of dental composites containing quaternary ammonium polyethyleneimine nanoparticles against Streptococcus mutans. Biomaterials 27:3995–4002

    Article  CAS  PubMed  Google Scholar 

  • Beyth N, Houri Haddad Y, Baraness Hadar L, Yudovin Farber I, Domb AJ, Weiss EI (2008) Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles. Biomaterials 29:4157–4163

    Article  CAS  PubMed  Google Scholar 

  • Beyth N, Yudovin Farber I, Bahir R, Domb AJ, Weiss EI (2010) Long-term antibacterial surface properties of composite resin incorporating polyethyleneimine nanoparticles. Quintessence Int 41:827–835

    PubMed  Google Scholar 

  • Beyth N, Farah S, Domb AJ, Weiss EI (2014a) Antibacterial dental resin composites. React Funct Polym 75:81–88

    Article  CAS  Google Scholar 

  • Beyth S, Polak D, Milgrom C, Weiss EI, Matanis S, Beyth N (2014b) Antibacterial activity of bone cement containing quaternary ammonium polyethyleneimine nanoparticles. J Antimicrob Chemother 69:854–855

    Article  CAS  PubMed  Google Scholar 

  • Carreher CE Jr (2003) Polymer chemistry, 6th edn. Marcel Dekker, Inc., Florida, USA

    Google Scholar 

  • Chen CZS, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23:3359–3368

    Article  CAS  PubMed  Google Scholar 

  • Chen CZS, Beck-Tan NC, Dhurjati P, van Dyk TK, LaRossa RA, Cooper SL (2000) Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: structure-activity studies. Biomacromolecules 1:473–480

    Article  CAS  PubMed  Google Scholar 

  • De Prijck K, De Smet N, Coenye T, Schacht E, Nelis HJ (2010) Prevention of Candida albicans biofilm formation by covalently bound dimethylaminoethylmethacrylate and polyethylenimine. Mycopathologia 170:213–221

    Article  CAS  PubMed  Google Scholar 

  • Dohm MT, Mowery BP, Czyzewski AM, Stahl SS, Gellman SH, Barron AE (2010) Biophysical mimicry of lung surfactant protein B by random nylon-3 copolymers. J Am Chem Soc 132:7957–7967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domb AJ, Beyth N, Farah S (2013) Quaternary ammonium antimicrobial polymers. MRS Online Proc Lib Arch 1569:97–107

    Article  CAS  Google Scholar 

  • Epand RF, Raguse TL, Gellman SH, Epand RM (2004) Antimicrobial 14- helical β-peptides: potent bilayer disrupting agents. Biochemistry (Mosc) 43:9527–9535

    Article  CAS  Google Scholar 

  • Epand RF, Mowery BP, Lee SE, Stahl SS, Lehrer RI, Gellman SH, Epand RM (2008) Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. J Mol Biol 379:38–50

    Article  CAS  PubMed  Google Scholar 

  • Farah S, Khan W, Farber I, Kesler Shvero D, Beyth N, Weiss EI, Domb AJ (2013) Crosslinked QA-PEI nanoparticles: synthesis reproducibility, chemical modifications, and stability study. Polym Adv Technol 24:446–452

    Article  CAS  Google Scholar 

  • Farah S, Aviv O, Laout N, Ratner S, Beyth N, Domb A (2014) Antimicrobial silica particles loaded with quaternary ammonium polyethyleneimine network. J Polym Adv Technol 25:689–692

    Article  CAS  Google Scholar 

  • Gao BJ, Zhang X, Zhu Y (2007) Studies on the preparation and antibacterial properties of quaternized polyethyleneimine. J Biomater Sci Polym Ed 18:531–544

    Article  CAS  PubMed  Google Scholar 

  • Gupta AL (2010) Polymer chemistry. Revised Edition. Pragati Prakashan Educational Publishers, Meerut, India

    Google Scholar 

  • Kanazawa A, Ikeda T, Endo T (1993) Polymeric phosphonium salts as a novel class of cationic biocides. II. Effects of counter anion and molecular weight on antibacterial activity of polymeric phosphonium salts. J Polym Sci A Polym Chem 31:1441–1447

    Article  CAS  Google Scholar 

  • Kumar RS, Arunachalam S (2007) DNA binding and antimicrobial studies of some polyethyleneimine–copper(II) complex samples containing 1,10-phenanthroline and l-theronine as co-ligands. Polyhedron 26:3255–3262

    Article  CAS  Google Scholar 

  • Kumar RS, Arunachalam S (2009) DNA binding and antimicrobial studies of polymer–copper(II) complexes containing 1,10-phenanthroline and l-phenylalanine ligands. Eur J Med Chem 44:1878–1883

    Article  CAS  PubMed  Google Scholar 

  • Kumar RS, Arunachalam S, Periasamy VS, Preethy CP, Riyasdeen A, Akbarsha MA (2008) DNA binding and biological studies of some novel water-soluble polymer–copper(II)–phenanthroline complexes. Eur J Med Chem 43:2082–2091

    Article  CAS  PubMed  Google Scholar 

  • Lakshmipraba J, Arunachalam S, Riyasdeen A, Dhivya R, Vignesh S, Akbarsha MA, James RA (2013) DNA/RNA binding and anticancer/antimicrobial activities of polymer-copper(II) complexes. Spectrochim Acta A 109:23–31

    Article  CAS  Google Scholar 

  • Lakshmipraba J, Arunachalam S, Gandi DA, Thirunalasundari T, Vignesh S, James RA (2017) Interaction of polymer-anchored copper(II) complexes with tRNA studied by spectroscopy methods and biological activities. Luminescence 32:309–316

    Article  CAS  PubMed  Google Scholar 

  • Lichter JA, Rubner MF (2009) Polyelectrolyte multilayers with intrinsic antimicrobial functionality: the importance of mobile polycations. Langmuir 25:7686–7694

    Article  CAS  PubMed  Google Scholar 

  • Lienkamp K, Madkour AE, Kumar KN, Nusslein K, Tew GN (2009) Antimicrobial polymers prepared by ring-opening metathesis polymerization: manipulating antimicrobial properties by organic counterion and charge density variation. Chem Eur J 15:11715–11722

    Article  CAS  PubMed  Google Scholar 

  • Mowery BP, Lee SE, Kissounko DA, Epand RF, Epand RM, Weisblum B, Stahl SS, Gellman SH (2007) Mimicry of antimicrobial host-defense peptides by random copolymers. J Am Chem Soc 129:15474–15476

    Article  CAS  PubMed  Google Scholar 

  • Palermo EF, Kuroda K (2009) Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromolecules 10:1416–1428

    Article  CAS  PubMed  Google Scholar 

  • Park ES, Kim HS, Kim MN, Yoon JS (2004) Antibacterial activities of polystyrene-block-poly(4-vinyl pyridine) and poly(styrenerandom-4-vinyl pyridine). Eur Polym J 40:2819–2822

    Article  CAS  Google Scholar 

  • Pasquier N, Keul H, Heine E, Moeller M (2007) From multifunctionalized poly(ethylene imine)s toward antimicrobial coatings. Biomacromolecules 8:2874–2882

    Article  CAS  PubMed  Google Scholar 

  • Pasquier N, Keul H, Heine E, Moeller M, Angelov B, Linser S, Willumeit R (2008) Amphiphilic branched polymers as antimicrobial agents. Macromol Biosci 8:903–915

    Article  CAS  PubMed  Google Scholar 

  • Porter EA, Wang X, Lee HS, Weisblum B, Gellman SH (2000) Nonhaemolytic β-amino-acid oligomers. Nature 404:565

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

  • Rahimi A (2004) Inorganic and organometallic polymers: a review. Iran Polym J 13:149–164

    CAS  Google Scholar 

  • Schmitt MA, Weisblum B, Gellman SH (2004) Unexpected relationships between structure and function in α/β-peptides: antimicrobial foldamers with heterogeneous backbones. J Am Chem Soc 126:6848–6849

    Article  CAS  PubMed  Google Scholar 

  • Schmitt MA, Weisblum B, Gellman SH (2006) Interplay among folding, sequence, and lipophilicity in the antibacterial and hemolytic activities of α/β-peptides. J Am Chem Soc 129:417–428

    Article  CAS  Google Scholar 

  • Singh J, Dubey RC (2009) Organic polymer chemistry. Pragati Prakashan Educational Publishers, Meerut, India

    Google Scholar 

  • Staudinger H (1920) Über polymerisation. Ber Dtsch Chem Ges 53:1073–1085

    Article  Google Scholar 

  • Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications reflections on the field. Adv Drug Deliv Rev 57:2106–2129

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Palermo EF, Yasuhara K, Caputo GA, Kuroda K (2013) Macromol Biosci 13:1285–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tossi A, Sandri L, Giangaspero A (2000) Amphipathic α-helical antimicrobial peptides. Biopolymers (Peptide Sci) 55:4–30

    Article  CAS  Google Scholar 

  • Venkataraman S, Zhang Y, Liu LH, Yang YY (2010) Design, syntheses and evaluation of hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures. Biomaterials 31:1751–1756

    Article  CAS  PubMed  Google Scholar 

  • Young RJ, Lovell PA (1991) Introduction to polymers, 2nd edn. Chapman & Hall, London, UK

    Book  Google Scholar 

  • Yudovin-Farber I, Beyth N, Nyska A, Weiss EI, Golenser J, Domb AJ (2008) Surface characterization and biocompatibility of restorative resin containing nanoparticles. Biomacromolecules 9:3044–3050

    Article  CAS  PubMed  Google Scholar 

  • Yudovin-Farber I, Golenser J, Beyth N, Weiss EI, Domb AJ (2010) Quaternary ammonium polyethyleneimine: antibacterial activity. J Nanomater 2010:1–11

    Article  CAS  Google Scholar 

  • Zhang Y, Jiang J, Chen Y (1999) Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts. Polymer 40:6189–6198

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lakshmipraba, J., Prabhu, R.N., Sivasankar, V. (2020). Polymer Macromolecules to Polymeric Nanostructures: Efficient Antibacterial Candidates. In: Prasad, R., Siddhardha, B., Dyavaiah, M. (eds) Nanostructures for Antimicrobial and Antibiofilm Applications. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-40337-9_9

Download citation

Publish with us

Policies and ethics