Skip to main content

Structure and Surface Morphology Techniques for Biopolymers

  • Chapter
  • First Online:
Biofibers and Biopolymers for Biocomposites

Abstract

Different techniques such as optical microscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, nuclear magnetic resonance, X-ray diffraction, and Fourier-transform infrared spectroscopy are used for the examination of biopolymer-based materials. This chapter discusses the characterisation of structure and surface morphology of the biopolymers, their blends, and composites by these techniques. A careful examination of biopolymers, their blends and composites are essential for the fruitful application of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grumezescu, A. M. (2017). Food packaging. Amsterdam; Boston: AP/Elsevier, 768 pp.

    Google Scholar 

  2. Poole-Warren, L., Martens, P., & Green, R. (2015). Biosynthetic polymers for medical applications. Elsevier.

    Google Scholar 

  3. Grumezescu, A. M. (2016). Nanobiomaterials in Galenic formulations and cosmetics: Applications of nanobiomaterials. Amsterdam; Boston: Elsevier/WA, William Andrew is an imprint of Elsevier, 433 pp.

    Google Scholar 

  4. Bajpai, P. (2019). Biobased polymers: Properties and applications (1st ed.). Cambridge: Elsevier, 250 pp.

    Google Scholar 

  5. Das, T. K., & Prusty, S. (2017). Biopolymer composites in field-effect transistors. In Biopolymer composites in electronics (pp. 219–229). Elsevier.

    Google Scholar 

  6. Epp, J. (2016). X-ray diffraction (XRD) techniques for materials characterization. In Materials characterization using nondestructive evaluation (NDE) methods (pp. 81–124). Woodhead Publishing.

    Google Scholar 

  7. Chatterjee, A. K. (2000). X-ray diffraction. In Handbook of analytical techniques in concrete science and technology (pp. 275–332).

    Chapter  Google Scholar 

  8. Trivedi, M. K., Nayak, G., Patil, S., Tallapragada, R. M., & Mishra, R. (2015). Impact of biofield treatment on chemical and thermal properties of cellulose and cellulose acetate. Journal of Bioengineering and Biomedical Sciences. https://doi.org/10.4172/2155-9538.1000162.

    Article  Google Scholar 

  9. Wulandari, W. T., Rochliadi, A., & Arcana, I. M. (2016). Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conference Series: Materials Science and Engineering,107, 012045. https://doi.org/10.1088/1757-899X/107/1/012045.

    Article  Google Scholar 

  10. Cohuo, S. C. P., Escamilla, G. C., González, A. V., Escamilla, V. V. A. F., & Calderon, J. U. (2018). Production and modification of cellulose nanocrystals from Agave tequilana weber waste and is effect on the melt rheology of PLA. International Journal of Polymer Science. https://doi.org/10.1155/2018/3567901.

    Article  Google Scholar 

  11. Gupta, K. K., Mishra, P. K., Srivastava, P., Gangwar, M., Nath, G., & Maiti, P. (2013). Hydrothermal in situ preparation of TiO2 particles onto poly(lactic acid) electrospun nanofibers. Applied Surface Science,264, 375–382.

    Article  CAS  Google Scholar 

  12. Chu, Z., Zhao, T., Li, L., Fan, J., & Qin, Y. (2017). Characterization of antimicrobial poly (lactic acid)/nano-composite films with silver and zinc oxide nanoparticles. Materials,10, 659. https://doi.org/10.3390/ma10060659.

    Article  CAS  Google Scholar 

  13. Shameli, K., Ahmad, M. B., Yunus, W. M. Z. W., Ibrahim, N. A., Rahman, R. A., Jokar, M., et al. (2010). Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. International Journal of Nanomedicine,5, 573–579.

    Article  CAS  Google Scholar 

  14. Shuhua, W., Qiaoli, X., Fen, L., Jinming, D., Husheng, J., & Bingshe, X. (2014). Preparation and properties of cellulose-based carbon microsphere/poly (lactic acid) composites. Journal of Composite Materials,48(11), 1297–1302. https://doi.org/10.1177/0021998313485263.

    Article  CAS  Google Scholar 

  15. Rajkumar, M., Meenakshisundaram, N., & Rajendran, V. (2011). Development of nanocomposites based on hydroxyapatite/sodium alginate: Synthesis and characterisation. Materials Characterization,62(5), 469–479.

    Article  CAS  Google Scholar 

  16. Usha, R., Jaimohan, S. M., Rajaram, A., & Mandal, A. B. (2010). Aggregation and self-assembly of non-enzymatic glycation of collagen in the presence of amino guanidine and aspirin: An in vitro study. International Journal of Biological Macromolecules,47, 402–409.

    Article  CAS  Google Scholar 

  17. Chauhan, S., Bansal, M., Khan, G., Yadav, S. K., Singh, A. K., Prakash, P., et al. (2018). Development, optimization and evaluation of curcumin loaded biodegradable crosslinked gelatin film for the effective treatment of periodontitis. Drug Development and Industrial Pharmacy,44(7), 1212–1221.

    Article  CAS  Google Scholar 

  18. Lin, S., Chen, L., Huang, L., Cao, S., Luo, X., & Liu, K. (2015). Novel antimicrobial chitosan–cellulose composite films bioconjugated with silver nanoparticles. Industrial Crops and Products,70, 395–403.

    Article  CAS  Google Scholar 

  19. Jiang, B., Li, S., Wu, Y., Song, J., Chen, S., Li, X., et al. (2018). Preparation and characterization of natural corn starch-based composite films reinforced by eggshell powder. CyTA-Journal of Food,16(1), 1045–1054.

    Article  CAS  Google Scholar 

  20. Günther, H. (2013). NMR spectroscopy: Basic principles, concepts and applications in chemistry. Wiley.

    Google Scholar 

  21. Yin, M., Lin, X., Ren, T., Li, Z., Ren, X., & Huang, T. S. (2018). Cytocompatible quaternized carboxymethyl chitosan/poly(vinyl alcohol) blend film loaded copper for antibacterial application. International Journal of Biological Macromolecules,120, 992–998.

    Article  CAS  Google Scholar 

  22. Sun, Z., Li, M., Jin, Z., Gong, Y., An, Q., Tuo, X., et al. (2018). Starch-graft-polyacrylonitrile nanofibers by electrospinning. International Journal of Biological Macromolecules,120, 2552–2559.

    Article  CAS  Google Scholar 

  23. Haroon, M., Yu, H., Wang, L., Ullah, R. S., Haq, F., & Teng, L. (2019). Synthesis and characterization of carboxymethyl starch-g-polyacrylic acids and their properties as adsorbents for ammonia and phenol. International Journal of Biological Macromolecules,138, 349–358.

    Article  CAS  Google Scholar 

  24. Hao, Y., Chen, Y., Li, Q., & Gao, Q. (2019). Synthesis, characterization and hydrophobicity of esterified waxy potato starch nanocrystals. Industrial Crops & Products,130, 111–117.

    Article  CAS  Google Scholar 

  25. Tan, W., Li, Q., Dong, F., Chen, Q., & Guo, Z. (2017). Preparation and characterization of novel cationic chitosan derivatives bearing quaternary ammonium and phosphonium salts and assessment of their antifungal properties. Molecules,22(9), 1438.

    Article  Google Scholar 

  26. Burgess, R. (2012). Understanding nanomedicine, an introductory textbook (1st ed.). Jenny Stanford Publishing. https://doi.org/10.1201/b12299

    Book  Google Scholar 

  27. Haugstad, G. (2012). Atomic force microscopy: Understanding basic modes and advanced applications. Wiley.

    Google Scholar 

  28. Eaton, P., & West, P. (2010). Atomic force microscopy. Oxford university press.

    Google Scholar 

  29. Yu, H., & Rahim, N. A. A. (Eds.). (2013). Imaging in cellular and tissue engineering. CRC Press.

    Google Scholar 

  30. Gaczynska, M., & Osmulski, P. A. (2008). AFM of biological complexes: What can we learn? Current Opinion in Colloid & Interface Science,13(5), 351–367. https://doi.org/10.1016/j.cocis.2008.01.004.

    Article  CAS  Google Scholar 

  31. Bonardd, S., Roble, E., Barandiaran, I., Saldías, C., Leiva, Á., & Kortaberria, G. (2018). Biocomposites with increased dielectric constant based on chitosan and nitrile-modified cellulose nanocrystals. Carbohydrate Polymers,199, 20–30.

    Article  CAS  Google Scholar 

  32. Tang, R., Yu, Z., Renneckar, S., & Zhang, Y. (2018). Coupling chitosan and TEMPO-oxidized nanofibrilliated cellulose by electrostatic attraction and chemical reaction. Carbohydrate Polymers,202, 84–90.

    Article  CAS  Google Scholar 

  33. Ni, P., Ba, H., Zhao, Ga, Han, Y., Wickramaratne, M. N., Dai, H., et al. (2019). Electrospun preparation and biological properties in vitro of polyvinyl alcohol/sodium alginate/nano-hydroxyapatite composite fiber membrane. Colloids and Surfaces B: Biointerfaces,173, 171–177.

    Article  CAS  Google Scholar 

  34. Rhim, J. W. (2004). Physical and mechanical properties of water-resistant sodium alginate films. LWT-Food Science and Technology,37(3), 323–330.

    Article  CAS  Google Scholar 

  35. Yang, L., Guo, J., Wu, J., Yang, Y., Zhang, S., Song, J., et al. (2017). Preparation and properties of a thin membrane based on sodium alginate grafting acrylonitrile. RSC Advances7(80), 50626–50633.

    Article  CAS  Google Scholar 

  36. Li, J., Chen, C., Wang, X., Gu, Z., & Chen, B. (2011). Novel strategy to fabricate PLA/Au nanocomposites as an efficient drug carrier for human leukemia cells in vitro. Nanoscale Research Letters,6(1), 29.

    Google Scholar 

  37. Cernencu, A. I., Lungu, A., Dragusin, D., Serafim, A., Vasile, E., Ionescu, C., et al. (2017). Design of cellulose–alginate films using PEG/NaOH aqueous solution as co-solvent. Cellulose,24(10), 4419–4431.

    Article  CAS  Google Scholar 

  38. Keyse, R. (1997). Introduction to scanning transmission electron microscopy (1st ed.). Taylor & Francis group. https://doi.org/10.1201/9780203749890

  39. Kumar, S., Krishnakumar, B., Sobral, A. J. F. N., & Koh, J. (2019). Bio-based (chitosan/PVA/ZnO) nanocomposites film: Thermally stable and photoluminescence material for removal of organic dye. Carbohydrate Polymers,205, 559–564.

    Article  CAS  Google Scholar 

  40. Upadhyaya, L., Singh, J., Agarwal, V., Pandey, A. C., Verma, S. P., Das, P., et al. (2014). In situ grafted nanostructured ZnO/carboxymethyl cellulose nanocomposites for efficient delivery of curcumin to cancer. Journal of Polymer Research,21, 550.

    Article  Google Scholar 

  41. Perotti, G. F., Tronto, J., Bizeto, M. A., Izumi, C. M. S., Temperini, M. L. A., Lugão, A. B., et al. (2014). Biopolymer-clay nanocomposites: Cassava starch and synthetic clay cast films. Journal of the Brazilian Chemical Society, 25, 320–330.

    Google Scholar 

  42. Rath, D., Chahataray, R., & Nayak, P. L. (2013). Synthesis and characterization of conducting polymers multi walled carbon nanotube-Chitosan composites coupled with poly (metachloroaniline). Middle-East Journal of Scientific Research,18(5), 635–641.

    Google Scholar 

  43. Agel, M. R., Baghdan, E., Pinnapireddy, S. R., Lehmann, J., Schäfer, J., & Bakowsky, U. (2019). Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria. Colloids and Surfaces B: Biointerfaces,178, 460–468.

    Article  CAS  Google Scholar 

  44. Tiwari, N., Nawale, L., Sarkar, D., & Badiger, M. (2017). Carboxymethyl cellulose-grafted mesoporous silica hybrid nanogels for enhanced cellular uptake and release of curcumin. Gels,3(1), 8.

    Article  Google Scholar 

  45. Ni, P., Bi, H., Zhao, G., Han, Y., Wickramaratne, M. N., Dai, H., et al. (2019). Electrospun preparation and biological properties in vitro of polyvinyl alcohol/sodium alginate/nano-hydroxyapatite composite fiber membrane. Colloids and Surfaces B: Biointerfaces,173, 171–177.

    Article  CAS  Google Scholar 

  46. Fujimoto, J. G., & Farkas, D. (2009). Biomedical optical imaging. Oxford University Press.

    Google Scholar 

  47. Herman, B., & Lemasters, J. J. (Eds.). (2012). Optical microscopy: Emerging methods and applications. Elsevier.

    Google Scholar 

  48. Di Gianfrancesco, A. (2017). Technologies for chemical analyses, microstructural and inspection investigations. In Materials for ultra-supercritical and advanced ultra-supercritical power plants (pp. 197–245). Woodhead Publishing.

    Google Scholar 

  49. Ali, A., Yu, L., Liu, H., Khalid, S., Meng, L., & Chen, L. (2017). Preparation and characterization of starch-based composite films reinforced by corn and wheat hulls. Journal of Applied Polymer Science,134(32), 45159.

    Article  Google Scholar 

  50. Ashok, A., Reddy, K. O., Tian, F. H., & Rajulu, A. V. (2019). Preparation and properties of cellulose/Thespesia lampas microfiber composite films. International Journal of Biological Macromolecules,127, 153–158.

    Article  CAS  Google Scholar 

  51. Venkatesana, J., Ryu, B., Sudha, P. N., & Kim, S. (2012). Preparation and characterization of chitosan–carbon nanotube scaffolds for bone tissue engineering. International Journal of Biological Macromolecules,50, 393–402.

    Article  Google Scholar 

  52. Qiu, T. Y., Song, M., & Zhao, L. G. (2016). Testing, characterization and modelling of mechanical behaviour of poly (lactic-acid) and poly (butylene succinate) blends. Mechanics of Advanced Materials and Modern Processes,2(1), 7.

    Article  Google Scholar 

  53. Xu, A., Xu, J., Xiao, L., Li, Z., Xiao, Y., Dargusch, M., et al. (2018). Double-layered microsphere based dual growth factor delivery system for guided bone regeneration. RSC Advances,8, 16503–16512.

    Article  CAS  Google Scholar 

  54. Di Gianfrancesco, A. (2017). Technologies for chemical analyses, microstructural and inspection investigations. In Materials for ultra-supercritical and advanced ultra-supercritical power plants (pp. 197–245). Woodhead Publishing. 10.1016/b978-0-08-100552-1.00008-7.

    Google Scholar 

  55. Yang, Z., Yu, W., Xu, D., Guo, L., Wu, F., & Xu, X. (2019). Impact of frozen storage on whole wheat starch and its A-Type and B-Type granules isolated from frozen dough. Carbohydrate polymers,223, 115142.

    Article  CAS  Google Scholar 

  56. Li, Z., Ramay, H. R., Hauch, K. D., Xiao, D., & Zhang, M. (2005). Chitosan–Alginate hybrid scaffolds for bone tissue engineering. Biomaterials,26(18), 3919–3928.

    Article  CAS  Google Scholar 

  57. Sujka, M., & Jamroz, J. (2013). Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocolloids,31(2), 413–419.

    Article  CAS  Google Scholar 

  58. Moshaverinia, A., Chen, C., Akiyama, K., Ansari, S., Xu, X., Chee, W. W., Schricker, S. R., & Shi, S. (2012). Alginate hydrogel as a promising scaffold for dental-derived stem cells: An in vitro study. Journal of Materials Science: Materials in Medicine,23(12), 3041–3051.

    Google Scholar 

  59. Liu, Y., Liu, A., Ibrahim, S. A., Yang, H., & Huang, W. (2018). Isolation and characterization of microcrystalline cellulose from pomelo peel. International Journal of Biological Macromolecules,111, 717–721.

    Article  CAS  Google Scholar 

  60. Wasserman, L. A., Papakhin, A. A., Borodina, Z. M., Krivandin, A. V., Sergeev, A. I., & Tarasov, V. F. (2019). Some physico-chemical and thermodynamic characteristics of maize starches hydrolyzed by glucoamylase. Carbohydrate Polymers,212, 260–269.

    Article  CAS  Google Scholar 

  61. Griffiths, P. R., & De Haseth, J. A. (2007). Fourier transform infrared spectrometry. Wiley. 10.1002/047010631x

    Google Scholar 

  62. Huth, F., Govyadinov, A., Amarie, S., Nuansing, W., Keilmann, F., & Hillenbrand, R. (2012). Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Letters,12(8), 3973–3978. https://doi.org/10.1021/nl301159v.

    Article  CAS  Google Scholar 

  63. Materazzi, S. (1997). Thermogravimetry–infrared spectroscopy (TG-FTIR) coupled analysis. Applied Spectroscopy Reviews,32(4), 385–404. https://doi.org/10.1080/05704929708003320.

    Article  CAS  Google Scholar 

  64. Mendes, J. F., Paschoalin, R. T., Carmona, V. B., Sena Neto, A. R., Marques, A. C. P., Marconcini, J. M., et al. (2016). Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers, 137, 452–458.

    Article  CAS  Google Scholar 

  65. Kulig, D., Zimoch-Korzycka, A., Jarmoluk, A., & Marycz, K. (2016). Study on Alginate-Chitosan complex formed with different polymers ratio. Polymers,8(5), 167. https://doi.org/10.3390/polym8050167.

    Article  CAS  Google Scholar 

  66. Behera, S. S., Das, U., Kumar, A., Bissoyi, A., & Singh, A. K. (2017). Chitosan/TiO2 composite membrane improves proliferation and survival of L929 fibroblast cells: Application in wound dressing and skin regeneration. International Journal of Biological Macromolecules, 98, 329–340.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotishkumar Parameswaranpillai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radoor, S. et al. (2020). Structure and Surface Morphology Techniques for Biopolymers. In: Khan, A., Mavinkere Rangappa, S., Siengchin, S., Asiri, A. (eds) Biofibers and Biopolymers for Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-40301-0_2

Download citation

Publish with us

Policies and ethics