Skip to main content

Arundo Donax Fibers as Green Materials for Oil Spill Recovery

  • Chapter
  • First Online:
Biofibers and Biopolymers for Biocomposites

Abstract

Oil spillage is considered one of the most devastating forms of pollution, for its effect on the environment, particularly on aquatic life. This kind of disaster can impact in two ways, directly caused by the polluting spilled oil or due to the cleanup process. In fact, oil floating on water does not allow sunlight to pass through and its toxicity puts the life of aquatic animals at risk. Furthermore, other factors can also contribute to this damage. In fact, a wrong oil recovery system can add a further pollution level. Polymer sorbents used for the oil spill recovery, if not properly treated, increase the level of marine and ground pollution. For this reason, in the last years, green materials are increasingly studied and used for this purpose. Green adsorbents (such as lignocellulosic, fruits fibers) are recently employed with excellent results. Aim of this book chapter is the evaluation of the oil sorption properties of natural fibers extracted from the stem of the giant reed Arundo Donax L., a perennial rhizomatous grass belonging to the Poaceae family that grows naturally all around the world thanks to its ability to tolerate different climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ariharasudhan, S., & Dhurai, B. (2019). Adsorption of oil from water surfaces using fibrous material—An overview. Man-Made Textiles in India, 47(4), 124–126.

    Google Scholar 

  2. Aguiar, F. C. F., & Ferreira, M. T. (2013). Plant invasions in the rivers of the Iberian Peninsula, south-western Europe: A review. Plant Biosystems—An International Journal Dealing with All Aspects of Plant Biology, 147(4), 1107–1119.

    Article  Google Scholar 

  3. Celesti-Grapow, L., Capotorti, G., Del Vico, E., Lattanzi, E., Tilia, A., & Blasi, C. (2013). The vascular flora of Rome. Plant Biosystems—An International Journal Dealing with All Aspects of Plant Biology, 147(4), 1059–1087.

    Article  Google Scholar 

  4. Sharma, K., Kushwaha, S. P. S., & Gopal, B. (1998). A comparative study of stand structure and standing crops of two wetland species, Arundo Donax and Phragmites karka, and primary production in Arundo Donax with observations on the effect of clipping. Tropical Ecology,39, 3–14.

    Google Scholar 

  5. Pompeiano, A., Remorini, D., Vita, F., Guglielminetti, L., Miele, S., & Morini, S. (2017). Growth and physiological response of Arundo donax L. to controlled drought stress and recovery. Plant Biosystems—An International Journal Dealing with All Aspects of Plant Biology, 151 (5), 906–914.

    Google Scholar 

  6. Perdue, R. E. (1958). Arundo Donax—Source of musical reeds and industrial cellulose. Economic Botany, 12(4), 368–404.

    Article  Google Scholar 

  7. Weidenfeller, B., Lambri, O.A., Bonifacich, F.G., Arlic, U., Gargicevich, D., Weidenfeller, B., et al. (2018). Damping of the woodwind instrument reed material Arundo Donax L. Materials Research, 21 (suppl 2).

    Google Scholar 

  8. Obataya, E., Umezawa, T., Nakatsubo, F., & Norimoto, M. (1999). The effects of water soluble extractives on the acoustic properties of reed (Arundo Donax L.). Holzforschung, 53 (1), 63–67.

    Google Scholar 

  9. Pilu, R., Bucci, A., Cerino Badone, F., & Landoni, M. (2012). Giant reed (Arundo Donax L.): A weed plant or a promising energy crop? African Journal of Biotechnology, 11(38), 9163–9174.

    Google Scholar 

  10. Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., & Santas, R. (2004). Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products, 19(3), 245–254.

    Article  CAS  Google Scholar 

  11. Papazoglou, E. G., Karantounias, G. A., Vemmos, S. N., & Bouranis, D. L. (2005). Photosynthesis and growth responses of giant reed (Arundo Donax L.) to the heavy metals Cd and Ni. Environment International, 31 (2), 243–249.

    Google Scholar 

  12. Flores, J. A., Pastor, J. J., Martinez-Gabarron, A., Gimeno-Blanes, F. J., Rodríguez-Guisado, I., & Frutos, M. J. (2011). Arundo Donax chipboard based on urea-formaldehyde resin using under 4 mm particles size meets the standard criteria for indoor use. Industrial Crops and Products, 34(3), 1538–1542.

    Article  CAS  Google Scholar 

  13. Fiore, V., Scalici, T., & Valenza, A. (2014). Characterization of a new natural fiber from Arundo Donax L. as potential reinforcement of polymer composites. Carbohydrate Polymers, 106, 77–83.

    Article  CAS  Google Scholar 

  14. Fiore, V., Scalici, T., Vitale, G., & Valenza, A. (2014). Static and dynamic mechanical properties of Arundo Donax fillers-epoxy composites. Materials & Design, 57, 456–464.

    Article  CAS  Google Scholar 

  15. Fiore, V., Botta, L., Scaffaro, R., Valenza, A., & Pirrotta, A. (2014). PLA based biocomposites reinforced with Arundo Donax fillers. Composites Science and Technology, 105, 110–117.

    Article  CAS  Google Scholar 

  16. Ismail, Z. Z., & Jaeel, A. J. (2014). A novel use of undesirable wild giant reed biomass to replace aggregate in concrete. Construction and Building Materials, 67, 68–73.

    Article  Google Scholar 

  17. Scalici, T., Fiore, V., & Valenza, A. (2016). Effect of plasma treatment on the properties of Arundo Donax L. leaf fibres and its bio-based epoxy composites: A preliminary study. Composites Part B: Engineering, 94, 167–175.

    Article  CAS  Google Scholar 

  18. Sun, R. (2010). Cereal straw as a resource for sustainable biomaterials and biofuels : Chemistry, extractives, lignins, hemicelluloses and cellulose. Elsevier.

    Google Scholar 

  19. Chen, B., Ye, X., Zhang, B., Jing, L., & Lee, K. (2019). Marine oil spills—Preparedness and countermeasures. World Seas: An Environmental Evaluation, 407–426.

    Google Scholar 

  20. DeLeo, D. M., Ruiz-Ramos, D. V., Baums, I. B., & Cordes, E. E. (2016). Response of deep-water corals to oil and chemical dispersant exposure. Deep Sea Research Part II: Topical Studies in Oceanography, 129, 137–147.

    Article  CAS  Google Scholar 

  21. Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32(11), 180.

    Article  CAS  Google Scholar 

  22. Ceylan, D., Dogu, S., Karacik, B., Yakan, S. D., Okay, O. S., & Okay, O. (2009). Evaluation of butyl rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater. Environmental Science & Technology, 43(10), 3846–3852.

    Article  CAS  Google Scholar 

  23. Wei, Q. F., Mather, R. R., Fotheringham, A. F., & Yang, R. D. (2003). Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. Marine Pollution Bulletin, 46(6), 780–783.

    Article  CAS  Google Scholar 

  24. Nikkhah, A. A., Zilouei, H., Asadinezhad, A., & Keshavarz, A. (2015). Removal of oil from water using polyurethane foam modified with nanoclay. Chemical Engineering Journal, 262, 278–285.

    Article  CAS  Google Scholar 

  25. Feng, Y., & Xiao, C. F. (2006). Research on butyl methacrylate–lauryl methacrylate copolymeric fibers for oil absorbency. Journal of Applied Polymer Science, 101(3), 1248–1251.

    Article  CAS  Google Scholar 

  26. Yang, L., Wang, Z., Li, X., Yang, L., Lu, C., & Zhao, S. (2016). Hydrophobic modification of platanus fruit fibers as natural hollow fibrous sorbents for oil spill cleanup. Water, Air, & Soil Pollution, 227(9), 346.

    Article  CAS  Google Scholar 

  27. Annunciado, T. R., Sydenstricker, T. H. D., & Amico, S. C. (2005). Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Marine Pollution Bulletin, 50(11), 1340–1346.

    Article  CAS  Google Scholar 

  28. Adhithya, N., Goel, M., & Das, A. (2017). Use of bamboo fiber in oil water separation. International Journal of Civil Engineering and Technology, 8(6), 925–931.

    Google Scholar 

  29. Liu, J., & Wang, X. (2019). A new method to prepare oil adsorbent utilizing waste paper and its application for oil spill clean-ups. BioResources, 14(2), 3886–3898.

    CAS  Google Scholar 

  30. Wang, S., Peng, X., Zhong, L., Tan, J., Jing, S., Cao, X., et al. (2015). An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup. Journal of Materials Chemistry A, 3(16), 8772–8781.

    Article  CAS  Google Scholar 

  31. Tu, L., Duan, W., Xiao, W., Fu, C., Wang, A., & Zheng, Y. (2018). Calotropis gigantea fiber derived carbon fiber enables fast and efficient absorption of oils and organic solvents. Separation and Purification Technology, 192, 30–35.

    Article  CAS  Google Scholar 

  32. Cao, S., Dong, T., Xu, G., & Wang, F. (2018). Cyclic filtration behavior of structured cattail fiber assembly for oils removal from wastewater. Environmental Technology, 39(14), 1833–1840.

    Article  CAS  Google Scholar 

  33. Liu, Y., Peng, Y., Zhang, T., Qiu, F., & Yuan, D. (2018). Superhydrophobic, ultralight and flexible biomass carbon aerogels derived from sisal fibers for highly efficient oil–water separation. Cellulose, 25(5), 3067–3078.

    Article  CAS  Google Scholar 

  34. Feng, Y., Liu, S., Liu, G., & Yao, J. (2017). Facile and fast removal of oil through porous carbon spheres derived from the fruit of Liquidambar formosana. Chemosphere, 170, 68–74.

    Article  CAS  Google Scholar 

  35. Husseien, M., Amer, A. A., El-Maghraby, A., & Taha, N. A. (2009). Availability of barley straw application on oil spill clean up. International Journal of Environmental Science & Technology, 6(1), 123–130.

    Article  CAS  Google Scholar 

  36. Dong, T., Xu, G., & Wang, F. (2015). Adsorption and adhesiveness of kapok fiber to different oils. Journal of Hazardous Materials, 296, 101–111.

    Article  CAS  Google Scholar 

  37. Said, A. E.-A. A., Ludwick, A. G., & Aglan, H. A. (2009). Usefulness of raw bagasse for oil absorption: A comparison of raw and acylated bagasse and their components. Bioresource Technology, 100(7), 2219–2222.

    Article  CAS  Google Scholar 

  38. Wang, J., Geng, G., Liu, X., Han, F., & Xu, J. (2016). Magnetically superhydrophobic kapok fiber for selective sorption and continuous separation of oil from water. Chemical Engineering Research and Design, 115, 122–130.

    Article  CAS  Google Scholar 

  39. De Rosa, I. M., Kenny, J. M., Puglia, D., Santulli, C., & Sarasini, F. (2010). Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology, 70(1), 116–122.

    Article  CAS  Google Scholar 

  40. Cheu, S. C., Kong, H., Song, S. T., Johari, K., Saman, N., Che Yunus, M. A., et al. (2016). Separation of dissolved oil from aqueous solution by sorption onto acetylated lignocellulosic biomass—Equilibrium, kinetics and mechanism studies. Journal of Environmental Chemical Engineering, 4(1), 864–881.

    Article  CAS  Google Scholar 

  41. Wahi, R., Chuah Abdullah, L., Nourouzi Mobarekeh, M., Ngaini, Z., & Choong Shean Yaw, T. (2017). Utilization of esterified sago bark fibre waste for removal of oil from palm oil mill effluent. Journal of Environmental Chemical Engineering, 5(1), 170–177.

    Article  CAS  Google Scholar 

  42. Aloulou, F., Boufi, S., & Labidi, J. (2006). Modified cellulose fibres for adsorption of organic compound in aqueous solution. Separation and Purification Technology, 52(2), 332–342.

    Article  CAS  Google Scholar 

  43. Nishi, Y., Iwashita, N., Sawada, Y., & Inagaki, M. (2002). Sorption kinetics of heavy oil into porous carbons. Water Research, 36(20), 5029–5036.

    Article  CAS  Google Scholar 

  44. Alaa El-Din, G., Amer, A. A., Malsh, G., & Hussein, M. (2018). Study on the use of banana peels for oil spill removal. Alexandria Engineering Journal, 57(3), 2061–2068.

    Article  Google Scholar 

  45. Piperopoulos, E., Calabrese, L., Mastronardo, E., Proverbio, E., & Milone, C. (2018). Synthesis of reusable silicone foam containing carbon nanotubes for oil spill remediation. Journal of Applied Polymer Science, 135(14), 46067.

    Article  CAS  Google Scholar 

  46. Dong, T., Cao, S., & Xu, G. (2017). Highly efficient and recyclable depth filtrating system using structured kapok filters for oil removal and recovery from wastewater. Journal of Hazardous Materials, 321, 859–867.

    Article  CAS  Google Scholar 

  47. Piperopoulos, E., Calabrese, L., Mastronardo, E., Abdul Rahim, S.H., Proverbio, E., & Milone, C. (2019). Assessment of sorption kinetics of carbon nanotube-based composite foams for oil recovery application. Journal of Applied Polymer Science, 136 (14).

    Google Scholar 

  48. Wang, N., & Deng, Z. (2019). Synthesis of magnetic, durable and superhydrophobic carbon sponges for oil/water separation. Materials Research Bulletin, 115, 19–26.

    Article  CAS  Google Scholar 

  49. Baker, R. W. (2004). Membrane technology and applications. Chichester, UK: Wiley.

    Book  Google Scholar 

  50. Voisin, H., Bergström, L., Liu, P., Mathew, A., Voisin, H., Bergström, L., et al. (2017). Nanocellulose-based materials for water purification. Nanomaterials, 7(3), 57.

    Article  CAS  Google Scholar 

  51. Cui, Y., Xu, G., & Liu, Y. (2014). Oil sorption mechanism and capability of cattail fiber assembly. Journal of Industrial Textiles, 43(3), 330–337.

    Article  CAS  Google Scholar 

  52. Wang, J., & Liu, S. (2019). Remodeling of raw cotton fiber into flexible, squeezing-resistant macroporous cellulose aerogel with high oil retention capability for oil/water separation. Separation and Purification Technology, 221, 303–310.

    Article  CAS  Google Scholar 

  53. Phanthong, P., Reubroycharoen, P., Kongparakul, S., Samart, C., Wang, Z., Hao, X., et al. (2018). Fabrication and evaluation of nanocellulose sponge for oil/water separation. Carbohydrate Polymers, 190, 184–189.

    Article  CAS  Google Scholar 

  54. Tesfaye, T., Sithole, B., & Ramjugernath, D. (2018). Valorisation of waste chicken feathers: Green oil sorbent. International Journal of Chemical Sciences, 16(3), 1–13.

    Google Scholar 

  55. Lee, J. G., Larive, L. L., Valsaraj, K. T., & Bharti, B. (2018). Binding of lignin nanoparticles at oil-water interfaces: An ecofriendly alternative to oil spill recovery. ACS Applied Materials & Interfaces, 10(49), 43282–43289.

    Article  CAS  Google Scholar 

  56. Wang, F., Xie, T., Zhong, W., Ou, J., Xue, M., & Li, W. (2019). A renewable and biodegradable all-biomass material for the separation of oil from water surface. Surface and Coatings Technology, 372, 84–92.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Calabrese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calabrese, L., Piperopoulos, E., Fiore, V. (2020). Arundo Donax Fibers as Green Materials for Oil Spill Recovery. In: Khan, A., Mavinkere Rangappa, S., Siengchin, S., Asiri, A. (eds) Biofibers and Biopolymers for Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-40301-0_13

Download citation

Publish with us

Policies and ethics