Skip to main content

Programmed Cell Death and Drought Stress Signaling

  • Chapter
  • First Online:
Salt and Drought Stress Tolerance in Plants

Abstract

Programmed cell death (PCD) refers to the death of a cell that is genetically programmed. Alongside cell division and cell migration, PCD enables the organism to strictly control cell numbers and tissue size as well as to protect itself from unwanted cells that threaten homeostasis. To counteract the oxidative damage, plants have evolved efficient antioxidant defense mechanisms containing enzymatic and non-enzymatic reactive oxygen species (ROS) scavengers. The function of ROS also as the messenger molecules interact with several other signaling pathways including nitric oxide (NO), salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). These interactions and ROS/hormonal balance determine whether the cell stays alive or enter the PCD pathway. Reactive oxygen species are also responsible for the transduction of stress signals and systemic acclimation to unfavorable environmental conditions. Although PCD causes crop yield losses, such selective death of cells under abiotic stress eventually provides survival benefits. Elucidation of the specific enzymes involved in PCD pathways is of a great interest from the context of applied agriculture and environmental protection, since it would enable the creation of plants that are more tolerant to stress. This chapter will provide an overview of PCD and its roles during development and in response to drought stress and physiological and molecular basis of manipulation of PCD pathways enhancing tolerance to drought stress in plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirrezabal L, Bouchier-Combaud S, Radziejwoski A, Dauzat M, Cookson SJ, Granier C (2006) Plasticity to soil water deficit in Arabidopsis thaliana: dissection of leaf development into underlying growth dynamic and cellular variables reveals invisible phenotypes. Plant Cell Environ 29:2216–2227

    Article  CAS  PubMed  Google Scholar 

  • Ahlfors R, Lång S, Overmyer K, Jaspers P, Brosché M, Tauriainen A, Kollist H, Tuominen H, Belles-Boix E, Piippo M et al (2004) Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell 16:1925–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum SA, Tanveer M, Ashraf U, Hussain S, Shahzad B, Khan I, Wang L (2016) Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environ Sci Pollu Res 23(17):17132–17141

    Article  CAS  Google Scholar 

  • Anjum SA, Ashraf U, Zohaib A, Tanveer M, Naeem M, Ali I, Nazir U (2017a) Growth and development responses of crop plants under drought stress: a review. Zemdirbyste 104(3):267–276

    Article  Google Scholar 

  • Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, Wang LC (2017b) Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci 8

    Google Scholar 

  • Awada T, Dunigan DD, Dickman MB (2003) Animal anti-apoptotic genes ameliorate the loss of turgor in water-stressed transgenic tobacco. Can J Plant Sci 83:499–506

    Article  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24(1):23–58

    Article  CAS  Google Scholar 

  • Beers EP (1997) Programmed cell death during plant growth and development. Cell Death Differ 4:649–661

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27(3):411–424

    Article  CAS  PubMed  Google Scholar 

  • Blanvillain R, Young B, Cai YM, Hecht V, Varoquaux F, Delorme V et al (2011) The Arabidopsis peptide kiss of death is an inducer of programmed cell death. EMBO J 30:1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowen ID (1993) Cell Biol Int 17(4):365–380

    Google Scholar 

  • Chen S, Dickman MB (2004) Bcl-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides. J Exp Bot 55:2617–2623

    Article  CAS  PubMed  Google Scholar 

  • Coll NS, Danon A, Meurer J, Cho WK, Apel K (2009) Characterization of soldat8, a suppressor of singlet oxygen-induced cell death in Arabidopsis seedlings. Plant Cell Physiol 50:707–718

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850–861

    Article  CAS  PubMed  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species. Plant Signal Behav 3(3):156–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Danon A, Miersch O, Felix G, op den Camp RGL, Apel K (2005) Concurrent activation of cell death-regulating signaling pathways by singlet oxygen in Arabidopsis thaliana. Plant J 41:68–80

    Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57(5):779–795

    Article  CAS  PubMed  Google Scholar 

  • Dat JF, Pellinen R, Beeckman T, Van De Cotte B, Langebartels C, Kangasjärvi J, Inzé D, Van Breusegem F (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33:621–632

    Article  CAS  PubMed  Google Scholar 

  • De Clercq I, Vermeirssen V, Van Aken O, Vandepoele K, Murcha MW, Law SR et al (2013) The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell 25:3472–3490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dellaporta SL, Calderon-Urrea A (1994) The sex determination process in maize. Sci. 266:1501–1505

    Article  CAS  Google Scholar 

  • Dickman MB, Park YK, Oltersdorf T, Li W, Clemente T, French R (2001) Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci USA 98:6957–6962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietrich RA, Richberg MH, Schmidt R, Dean C, Dangl JL (1997) A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell 88:685–694

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Zhang W, Li B, Wang Y, Li K, Sodmergen et al (2010) An endoplasmic reticulum response pathway mediates programmed cell death of root tip induced by water stress in Arabidopsis. New Phytol 186(3):681–695

    Google Scholar 

  • Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44:817–829

    Article  CAS  PubMed  Google Scholar 

  • Epple P, Mack AA, Morris VRF, Dangl JL (2003) Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins. Proc Natl Acad Sci USA 100:6831–6836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fadini GP, Menegazzo L, Scattolini V, Gintoli M, Albiero M, Avogaro A (2015) A perspective on NETosis in diabetes and cardiometabolic disorders. Nutr Metab Cardiovasc Dis NMCD 26(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Fomicheva AS, Tuzhikov AI, Beloshistov RE, Trusova SV, Galiullina RA, Mochalova LV, Chichkova NV, Vartapetian AB (2012) Programmed cell death in plants. Biochemistry (Mosc) 77:1452–1464

    Article  CAS  Google Scholar 

  • Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, Orlandini GE, Zecchi Orlandini S (2000) Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cellular Physio 182(1):41–49

    Google Scholar 

  • Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Mizukado S, Fujita Y, Ichikawa T, Nakazawa M, Seki M et al (2007) Identification of stress-tolerance-related transcription-factor genes via mini-scale Full-length cDNA Over-eXpressor (FOX) gene hunting system. Biochem Biophys Res Commun 364:250–257

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124(4):509–525

    Article  CAS  PubMed  Google Scholar 

  • Giuliani C, Consonni G, Gavazzi G, Colombo M, Dolfini S (2002) Programmed cell death during embryogenesis in maize. Ann Bot 90:287–292

    Google Scholar 

  • Green D (2011) Means to an end. Cold Spring Harbor Laboratory Press, New York. ISBN 978-0-87969-888-1

    Google Scholar 

  • Greenberg JT (1996) Programmed cell death: a way of life for plants. Proc Natl Acad Sci USA 93:12094–12097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara-Nishimura I, Inoue K, Nishimura M (2010) A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Lett 294:89–93

    Article  Google Scholar 

  • Harb A, Krishnan A, Ambavaram MMR, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154(3):1254–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He R, Drury GE, Rotari VI, Gordon A, Willer M, Farzaneh T et al (2008) Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis. J Biol Chem 283:774–783

    Article  CAS  PubMed  Google Scholar 

  • Hill RD, Huang S, Stasolla C (2013) Hemoglobins, programmed cell death and somatic embryogenesis. Plant Sci 211:35–41

    Article  CAS  PubMed  Google Scholar 

  • Hoang TML, Williams B, Khanna H, Dale J, Mundree SG (2014) Physiological basis of salt stress tolerance in rice expressing the antiapoptotic gene SfIAP. Funct Plant Biol 41:1168–1177

    Article  CAS  PubMed  Google Scholar 

  • Hoang TML, Moghaddam L, Williams B, Khanna H, Dale J, Mundree SG (2015) Development of salinity tolerance in rice by constitutive-overexpression of genes involved in the regulation of programmed cell death. Front Plant Sci 6:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Horvitz HR, Ellis HM, Sternberg PW (1982) Programmed cell death in nematode development. Neurosci Comment 1:56–65

    Google Scholar 

  • Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–1856

    Article  CAS  Google Scholar 

  • Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P (2000) The role of aquaporins in cellular and whole plant water balance. Biochim Biophys Acta 1465(1–2):324–342

    Article  CAS  PubMed  Google Scholar 

  • Kang CH, Jung WY, Kang YH, Kim JY, Kim DG, Jeong JC, Baek DW, Jin JB, Lee JY, Kim MO et al (2006) AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ 13:84–95

    Article  CAS  PubMed  Google Scholar 

  • Kazzaz JA, Xu J, Palaia TA, Mantell L, Fein AM, Horowitz S (1996) Cellular oxygen toxicity: oxidant injury without apoptosis. J Biol Chem 271:15182–15186

    Article  CAS  PubMed  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Wang M, Bai Y, Zeng Z, Guo F, Han N et al (2014) Bcl-2 suppresses activation of VPEs by inhibiting cytosolic Ca2+ level with elevated K+ efflux in NaCl-induced PCD in rice. Plant Physiol Biochem 80:168–175

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11(7):725–730

    Article  PubMed  CAS  Google Scholar 

  • Lam E (2004) Controlled cell death, plant survival and development. Nat Rev Mol Cell Biol 5:305–315

    Article  CAS  PubMed  Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853

    Article  CAS  PubMed  Google Scholar 

  • Lang F, Lang KS, Lang PA, Huber SM, Wieder T (2006) Mechanisms and significance of eryptosis. Antioxid Redox Signal 8(7–8):1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Park CM (2012) Regulation of reactive oxygen species generation under drought conditions in Arabidopsis. Plant Signal Behav 7(6):599–601

    Article  CAS  Google Scholar 

  • Lee KP, Kim C, Landgraf F, Apel K (2007) EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci USA 104:10270–10275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Seo PJ, Lee HJ, Park CM (2012) A NAC transcription factor NTL4 promotes reactive oxygen species production during drought‐induced leaf senescence inArabidopsis. Plant J 70(5):831–844

    Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  CAS  PubMed  Google Scholar 

  • Li M, Hong Y, Wang X (2009) Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim Biophys Acta 1791(9):927–935

    Article  CAS  PubMed  Google Scholar 

  • Li W, Kabbage M, Dickman MB (2010) Transgenic expression of an insect inhibitor of apoptosis gene, SfIAP, confers abiotic and biotic stress tolerance and delays tomato fruit ripening. Physiol Mol Plant Pathol 74:363–375

    Article  CAS  Google Scholar 

  • Liu JX, Srivastava R, Che P, Howell SH (2007) An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. Plant Cell 19:4111–4119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Li Z, Wang Y, Xing D (2014) Overexpression of ALTERNATIVE OXIDASE1a alleviates mitochondria-dependent programmed cell death induced by aluminium phytotoxicity in Arabidopsis. J Exp Bot 65:4465–4478

    Article  CAS  PubMed  Google Scholar 

  • Lorrain S, Vailleau F, Balagué C, Roby D (2003) Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci 8:263–271

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Laluk K, Lai Z, Veronese P, Song F, Mengiste T (2010) The Arabidopsis botrytis susceptible1 interactor defines a subclass of RING E3 ligases that regulate pathogen and stress responses. Plant Physiol 154:1766–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo A, Mühlenbock P, Rustérucci C, Chi-Chen Chang C, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S (2004) LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136:2818–2830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Arch Biochem Biophys 452(1):55–68

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhara I, Malik KA, Miura M, Ohashi Y (1999) Animal cell-death suppressors Bcl-xL and Ced-9 inhibit cell death in tobacco cells. Curr Biol 9:775–778

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Herr EH, Orvar BL, Van Camp W, Willekens H, Inzé D, Ellis BE (1999) Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proc Nat Acad Sci 96(24):14165–14170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Møller SG, McPherson MJ (1998) Developmental expression and biochemical analysis of the Arabidopsis atao1 gene encoding an H2O2-generating diamine oxidase. Plant J 13:781–791

    Article  PubMed  Google Scholar 

  • Montillet J-L, Chamnongpol S, Rustérucci C, Dat J, Van de Cotte B, Agnel J-P, Battesti C, Inzé D, Van Breusegem F, Triantaphylidès C (2005) Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol 138:1516–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R (2011) Plant adaptations to salt and water stress: differences and commonalities. In: Ismail T (ed) Advances in botanical research. Academic Press, Waltham, pp 1–32

    Google Scholar 

  • Nakagami H, Kiegerl S, Hirt H (2004) OMTK1, a novel MAPKKK, channels oxidative stress signaling through direct MAPK interaction. J Biol Chem 279:26959–26966

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):97–103

    Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89(7):841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • op den Camp RGL, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Göbel C, Feussner I et al (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332

    Google Scholar 

  • Örvar BL, McPherson J, Ellis BE (1997) Pre-activating wounding response in tobacco prior to high-level ozone exposure prevents necrotic injury. Plant J 11:203–212

    Article  PubMed  Google Scholar 

  • Overmyer K, Brosché M, Pellinen R, Kuittinen T, Tuominen H, Ahlfors R, Keinänen M, Saarma M, Scheel D, Kangasjärvi J (2005) Ozone-induced programmed cell death in the Arabidopsis radical-induced cell death1 mutant. Plant Physiol 137:1092–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul J-Y, Becker DK, Dickman MB, Harding RM, Khanna HK, Dale JL (2011) Apoptosis-related genes confer resistance to Fusarium wilt in transgenic ‘Lady Finger’ bananas. Plant Biotechnol J. 9:1141–1148

    Article  CAS  PubMed  Google Scholar 

  • Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH (2005) Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol 139:1291–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ et al (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406(6797):731–734

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62(3):869–882

    Article  CAS  PubMed  Google Scholar 

  • Qiao J, Mitsuhara I, Yazaki Y, Sakano K, Gotoh Y, Miura M, Ohashi Y (2002) Enhanced resistance to salt, cold and wound stresses by overproduction of animal cell death suppressors Bcl-xl and Ced-9 in tobacco cells—their possible contribution through improved function of organella. Plant Cell Physiol 43:992–1005

    Article  CAS  PubMed  Google Scholar 

  • Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ 25(2):141–151

    Article  CAS  PubMed  Google Scholar 

  • Ren D, Yang H, Zhang S (2002) Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem 277:559–565

    Article  CAS  PubMed  Google Scholar 

  • Ross M (2016) Histology: a text and atlas (7th ed.), p 94. ISBN 978-1451187427

    Google Scholar 

  • Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK et al (2012) WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol J 10(1):2–11

    Article  CAS  PubMed  Google Scholar 

  • Samuel MA, Ellis BE (2002) Double jeopardy: both overexpression and suppression of a redox-activated plant-mitogen-activated protein kinase render tobacco plants ozone sensitive. Plant Cell 14:2059–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala S, Cuin TA, Prismall L, Nemchinov LG (2007) Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. Planta 227:189–197

    Article  CAS  PubMed  Google Scholar 

  • Simeonova E, Sikora A, Charzyńska M, Mostowska A (2000) Aspects of programmed cell death during leaf senescence of mono- and dicotyledonous plants. Protoplasma 214:93–101

    Article  Google Scholar 

  • Sivamani E, Bahieldin1 A, Wraith JM, Al-Niemi T, Dyer WE, Ho THD et al (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155(1):1–9

    Google Scholar 

  • Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21(2):197–203

    Article  CAS  PubMed  Google Scholar 

  • Skirycz A, De Bodt S, Obata T, De Clercq I, Claeys H, De Rycke R et al (2010) Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress. Plant Physiol 152(1):226–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suarez MF, Filonova LH, Smertenko A, Savenkov EI, Clapham DH, Von Arnold S, Zhivotovsky B, Bozhkov PV (2004) Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Curr Biol 14:R339–R340

    Article  CAS  PubMed  Google Scholar 

  • Tanveer M, Shabala S (2018) Targeting redox regulatory mechanisms for salinity stress tolerance in crops. In: Salinity responses and tolerance in plants, vol 1. Springer, Cham, pp 213–234

    Chapter  Google Scholar 

  • Tanveer M, Shahzad B, Sharma A, Khan EA (2018) 24-Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants. Plant Physiol Biochem

    Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T et al (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmo-sensor. Plant Cell 11(9):1743–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Camp W, Willekens H, Bowler C, Van Montagu M, Inzé D, Reupold-Popp P, Sandermann H Jr, Langebartels C (1994) Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Biotechnology 12:165–168

    Google Scholar 

  • Vaux DL, Cory S, Adams JM (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335:440–442

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book

    Google Scholar 

  • Wagner D, Przybyla D, op den Camp R, Kim C, Landgraf F, Lee KP, Würsch M, Laloi C, Nater M, Hideg E et al (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306:1183–1185

    Google Scholar 

  • Wang W, Pan J, Zheng K, Chen H, Shao H, Guo Y, Hongwu B, Han N, Wang J, Zhu M (2009a) Ced-9 inhibits Al-induced programmed cell death and promotes Al tolerance in tobacco. Biochem Biophys Res Commun 383:141–145

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Song J, Zhang Y, Yang B, Chen S (2009b) Expression of baculovirus anti-apoptotic p35 gene in tobacco enhances tolerance to abiotic stress. Biotechnol Lett 31:585–589

    Article  PubMed  CAS  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C et al (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1(2):198–217

    Article  CAS  PubMed  Google Scholar 

  • Williams B, Dickman M (2008) Plant programmed cell death: can’t live with it; can’t live without it. Mol Plant Pathol 9:531–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Schumaker KS, Zhu J-K (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl):S165–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110(1):249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Xu W, Xi H, Ma W, He Z, Ma M (2013) The ER luminal binding protein (BiP) alleviates Cd2+-induced programmed cell death through endoplasmic reticulum stress-cell death signaling pathway in tobacco cells. J Plant Physiol 170:1434–1441

    Article  CAS  PubMed  Google Scholar 

  • Yen C-H, Yang C-H (1998) Evidence for programmed cell death during leaf senescence in plants. Plant Cell Physiol 39:922–927

    Article  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38(10):1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S (2003) Molecular regulation of leaf senescence. Curr Opin Plant Biol 6:79–84

    Article  CAS  PubMed  Google Scholar 

  • Young TE, Gallie DR (2000) Programmed cell death during endosperm development. Plant Mol Biol 44:283–301

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Turner JG (2008) Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis. PLoS ONE 3(11):e3699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Liu S, Takano T (2008) Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation, and cold tolerance. Plant Mol Biol 68131–143

    Google Scholar 

  • Zhang L, Li Y, Xing D, Gao C (2009) Characterization of mitochondrial dynamics and subcellular localization of ROS reveal that HsfA2 alleviates oxidative damage caused by heat stress in Arabidopsis. J Exp Bot 60:2073–2091

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang L, Meng H, Wen H, Fan Y, Zhao J (2011) Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol Biol 75:365–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Stanley BA, Zhang W, Assmann SM (2010) ABA-regulated G protein signaling in Arabidopsis guard cells: a proteomic perspective. J Proteome Res 9(4):1637–1647

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Latif, S. et al. (2020). Programmed Cell Death and Drought Stress Signaling. In: Hasanuzzaman, M., Tanveer, M. (eds) Salt and Drought Stress Tolerance in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-40277-8_8

Download citation

Publish with us

Policies and ethics