Skip to main content

Physiological Role of Gamma-Aminobutyric Acid in Salt Stress Tolerance

  • Chapter
  • First Online:
Salt and Drought Stress Tolerance in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Extreme salt environments are destructive to several plant and limiting the crop productivity. The effect of salt stress involves modifications in different metabolic and physiological processes. Salinity stress inhibits plant growth, to inhibit photosynthesis, to alter metabolism of reactive oxygen species, and to cause cell death that finally obstructs the production of crops. Plants synthesized various compounds that involve in signaling and play important role in stress tolerance. Gamma-aminobutyric acid (GABA) is a four-carbon, ubiquitous, non-protein amino acid. The synthesis of GABA occurs in the cytosol by an irreversible alpha-decarboxylation of L-glutamate by L-glutamate decarboxylase. During salt stress condition, the accumulation of GABA increases that helps in to stabilizing the intracellular pH of cell and carbon/nitrogen metabolism for the Krebs cycle. Exogenic GABA treatment enhanced plant growth, improved stress tolerance via scavenges free radicals, regulating enzyme activities and stabilization in plant against salinity stress. In this chapter, we highlight on the physiological and metabolic role of GABA in relation to salt stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd EL-Azim WM, Ahmed STh (2009) Effect of salinity and cutting date on growth and chemical constituents of Achillea fragratissima Forssk, under Ras Sudr conditions. Res J Agr Biol Sci 5:1121–1129

    Google Scholar 

  • Abd El-Wahab MA (2006) The efficiency of using saline and fresh water irrigation as alternating methods of irrigation on the productivity of Foeniculum vulgare Mill subsp. vulgare var. vulgare under North Sinai conditions. Res J Agr Biol Sci 2:571–577

    Google Scholar 

  • Al Hassan M, Estrelles E, Soriano P, López-Gresa MP, Bellés JM, Boscaiu M, Vicente O (2017) Unraveling salt tolerance mechanisms in halophytes: a comparative study on four Mediterranean Limonium species with different geographic distribution patterns. Front Plant Sci 8:1438

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Karaki G (1997) Barley response to salt stress at varied levels of phosphorus. J Plant Nutr 20:1635–1643

    Article  CAS  Google Scholar 

  • Almeselmani M, Deshmukh PS, Sairam RK (2009) High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes. Acta Agron Hung 57:1–14

    Article  CAS  Google Scholar 

  • Al-Quraan NA, Al-Share AT (2016) Characterization of the γ-aminobutyric acid shunt pathway and oxidative damage in Arabidopsis thaliana pop 2 mutants under various abiotic stresses. Biol Plantarum 60:132–138

    Article  CAS  Google Scholar 

  • Ansari MI, Chen SCG (2009) Biochemical characterization of gamma-aminobutyric acid (GABA): pyruvate transaminase during rice leaf senescence. Int J Integr Biol 16:27–32

    Google Scholar 

  • Ansari MI, Hasan S, Jalil SU (2014) Leaf senescence and GABA shunt. Bioinformation 10:730–732

    Article  Google Scholar 

  • Ashraf M (1993) Effect of sodium chloride on water relations and some organic osmotica in arid zone plant species Melilotus indica (L.). All Tropenlandwirt 94:95–102

    Google Scholar 

  • Ashraf M, Orooj A (2006) Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Trachyspermum ammi [L.] Sprague). J Arid Environ 64:209–220

    Article  Google Scholar 

  • Assmann SM (2003) OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells. Trends Plant Sci 8:151–153

    Article  CAS  PubMed  Google Scholar 

  • Baghalian K, Haghiry A, Naghavi MR, Mohammadi A (2008) Effect of saline irrigation water on agronomical and phytochemical characters of chamomile (Matricaria recutita L.). Scientia Hort 116:437–441

    Article  CAS  Google Scholar 

  • Barbagallo A, Nicola AD, Missikoff M (2010) The influence of salt stress on seed germination, growth and yield of canola cultivars. Notulae Bot Horti Agrobotanici Cluj-Napoca 38:128–133

    Google Scholar 

  • Beuve N et al (2004) Putative role of γ-amino butyric acid (GABA) as a long distance signal in upregulation of nitrate uptake in Brassica napus L. Plant Cell Environ 27:1035–1046

    Article  CAS  Google Scholar 

  • Boonburapong B, Laloknam S, Incharoensakdi A (2016) Accumulation of gamma-aminobutyric acid in the halotolerant cyanobacterium Aphanothece halophytica under salt and acid stress. J Appl Phycol 28:141–148

    Article  CAS  Google Scholar 

  • Bouche N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    Article  CAS  PubMed  Google Scholar 

  • Bouché N, Fait A, Bouché D, Moller SG, Fromm H (2003) Mitochondrial succinate-semialdehyde dehydrogenase of the gamma-aminobutyrate shunt in required to restricts levels of reactive oxygen intermediates in plants. Proc Natl Acad Sci USA 100:6843–6848

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bown AW, Shelp BJ (1997) The metabolism and function of gamma aminobutyric acid. Plant Physiol 115:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitbreuz KE, Shelp BJ (1995) Subcellular compartmentation of the 4-aminobutyric shunt in protoplast from developing soybean cotelydons. Plant Physiol 108:99–103

    Article  Google Scholar 

  • Breitkreuz KE, Shelp BJ, Fischer WN, Schwacke R, Rentsch D (1999) Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana. FEBS Lett 450 (3):280–284

    Google Scholar 

  • Buttery BR, Buzzell RI (1997) The relationship between chlorophyll content and rate of photosynthesis in soybeans. Can J Plant Sci 57:1–5

    Article  Google Scholar 

  • Bybordi A, Tabatabaei SJ, Ahmedov A (2010a) Effect of salinity on the growth and peroxidase and iaa oxidase activities in canola. J Food Agric Environ 8:109–112a

    CAS  Google Scholar 

  • Bybordi A, Tabatabaei SJ, Ahmedov A (2010b) Effects of salinity on fatty acid composition of canola (Brassica napus L.). J Food Agric Environ 8:113–115b

    CAS  Google Scholar 

  • Cao SF, Cai YT, Yang ZF, Zheng YH (2012) MeJA induces chilling tolerance in loquat fruit by regulating proline and γ-aminobutyric acid contents. Food Chem 133:1466–1470

    Article  CAS  Google Scholar 

  • Carillo P (2018) GABA shunt in durum wheat. Front Plant Sci 9:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z et al (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255

    Article  CAS  PubMed  Google Scholar 

  • Cheng B, Li Z, Liang L, Cao Y, Zeng W, Zhang X, Ma X, Huang L, Nie G, Liu W, Peng Y (2018) The γ-Aminobutyric Acid (GABA) alleviates salt stress damage during seeds germination of white clover associated with Na+/K+ transportation, dehydrins accumulation, and stress-related genes expression in white clover. Int J Mol Sci 19(9):2520

    Google Scholar 

  • Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signaling of water shortage. Plant J 52:167–174

    Article  CAS  PubMed  Google Scholar 

  • Coleman ST, Fang TK, Rovinsky SA et al (2001) Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J Biol Chem 276:244–250

    Article  CAS  PubMed  Google Scholar 

  • Cuartero J, Bolarín MC, Asíns MJ, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57:1045–1058

    Article  CAS  PubMed  Google Scholar 

  • Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan DY, Li WQ, Liu XJ, Ouyang H, An P, Duan DY, Liu WQ (2007) Seed germination and seedling growth of Suaeda salsa under salt stress. Ann Bot Fenn 44:161–169

    CAS  Google Scholar 

  • Fortmeier R, Schubert S (1995) Salt tolerance of maize (Zea mays L.): the role of sodium exclusion. Plant Cell Environ 18 (9):1041–1047

    Google Scholar 

  • Grattan SR, Grieves CM (1999) Salinity-mineral nutrient relations in horticultural crops. Scientia Hort 78:127–157

    Article  CAS  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    Article  CAS  Google Scholar 

  • Hayashi H, Alia Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru K (1999) Transformation of a CAM plant, the facultative halophyte Mesembryanthemum crystallinum by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 57:61–63

    Article  Google Scholar 

  • Jalil SU, Ansari MI (2019) Nanoparticles and abiotic stress tolerance in plants: synthesis, action and signalling mechanisms. In: Khan MIR, Sudhakar P, Ferrante RA, Khan N (eds) Plant signaling molecules-role and regulation under stressful environments, 1st edn. Elsevier, pp 549–561

    Google Scholar 

  • Jalil SU, Ahmad I, Ansari MI (2016) Screening of Arabidopsis thaliana GABA—transaminase mutant and its root pattern analysis. J Biol Chem Res 33:909–917

    Google Scholar 

  • Jalil SU, Ahmad I, Ansari MI (2017) Functional loss of GABA transaminase (GABA-T) expressed early leaf senescence under various stress conditions in Arabidopsis thaliana. Curr Plant Biol 9–10:11–22

    Article  Google Scholar 

  • Jiang Q, Roche D, Monaco TA, Hole D (2006) Stomatal conductance is a key parameter to assess limitations to photosynthesis and growth potential in barley genotypes. Plant Biol 8:515–521

    Article  CAS  PubMed  Google Scholar 

  • Jouyban Z (2012) The effects of salt stress on plant growth. Tech J Eng Appl Sci 2:7–10

    CAS  Google Scholar 

  • Karaba A et al (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA 104:15270–15275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya C, Tuna AL, Okant AM (2010) Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turk J Agric For 34:529–538

    Google Scholar 

  • Kinnersley AM, Turano FJ (2000) g-Aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19:479–509

    Article  CAS  Google Scholar 

  • Krishnan S, Laskowski K, Shukla V, Merewitz EB (2013) Mitigation of drought stress damage by exogenous application of a non-protein amino acid gamma aminobutyric acid on perennial ryegrass. J. Am Soc Hort Sci 138:358–366

    Article  Google Scholar 

  • Lane TR, Stiller M (1970) Glutamic acid decarboxylation in Chlorella. Plant Physiol 45:558–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Bai Q, Jin X, Wen H, Gu Z (2010) Effects of cultivar and culture conditions on γ-aminobutyric acid accumulation in germinated fava beans (Vicia faba L.). J Sci Food Agric 90:52–57

    Article  CAS  PubMed  Google Scholar 

  • Li Z et al (2015) Exogenously applied spermidine improves drought tolerance in creeping bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones. Plant Growth Regul 76:71–82

    Article  CAS  Google Scholar 

  • Li Y, Fan Y, Ma Y, Zhang Z, Yue H, Wang L, Li J, Jiao Y (2017) Effects of exogenous-aminobutyric acid (GABA) on photosynthesis and antioxidant system in pepper (Capsicum annuum L.) seedlings under low light stress. J Plant Growth Regul 36:1–14

    Article  CAS  Google Scholar 

  • Lilius G, Holmberg N, Bülow L (1996) Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Biotechnology (NY) 14:177–180

    Google Scholar 

  • Liu K, Xu S, Xuan W, Ling T, Cao Z, Huang B, Sun Y, Fang L, Liu Z, Zhao N (2007) Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa. Plant Sci 172:544–555

    Article  CAS  Google Scholar 

  • Luo HY, Yang LW, Gao HB, Xiao-Lei WU, Liu HH (2011) Physiological mechanism of GABA soaking to tomato seed germination and seedling development under NaCl stress. Acta Bot Boreal-Occident Sin 31:2235–2242

    CAS  Google Scholar 

  • Luo D, Zhou Q, Wu Y, Chai X et al (2019) Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC Plant Biol 19:32

    Google Scholar 

  • Maa Y, Wanga P, Chena Z, Gua Z, Yanga R (2018) GABA enhances physio-biochemical metabolism and antioxidant capacity of germinated hulless barley under NaCl stress. J Plant Physiol 231:192–201

    Article  CAS  Google Scholar 

  • Malekzadeh P, Khara J, Heydari R (2014) Alleviating effects of exogenous gamma-aminobutiric acid on tomato seedling under chilling stress. Physiol Mol Biol Plants 20:133–137

    Article  CAS  PubMed  Google Scholar 

  • Mansour MMF, Salama KHA, Ali FZM, Abou HAF (2005) Cell and plant responses to NaCl in Zea mays cultivars differing in salt tolerance. Gen Appl Plant Physiol 31:29–41

    CAS  Google Scholar 

  • Menezes-Benavente KSP, Margis-Pinheiro M, Scandalios JG (2004) Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Redox Rep 9:29–36

    Article  CAS  PubMed  Google Scholar 

  • Misra AN, Srivastava A, Strasser RJ (2001) Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and brassica seedlings. J Plant Physiol 158:1173–1181

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Naumann JC, Young DR, Anderson JE (2007) Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. Physiol Plant 131:422–433

    Article  CAS  PubMed  Google Scholar 

  • Nayyar H, Kaur R, Kaur S, Singh R (2014) g-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants. J Plant Growth Regul 33:408–419

    Article  CAS  Google Scholar 

  • Omoto E, Taniguchi M, Miyake H (2012) Adaptation responses in C4 photosynthesis of maize under salinity. J Plant Physiol 169:469–477

    Article  CAS  PubMed  Google Scholar 

  • Pitann B, Mohamed AK, Neubert AB, Schubert S (2013) Tonoplast Na+/H+ antiporters of newly developed maize (Zea mays) hybrids contribute to salt resistance during the second phase of salt stress. J Plant Nutr Soil Sci 176:148–156

    Article  CAS  Google Scholar 

  • Qiu ZB, Li JT, Zhang MM, Bi ZZ, Li ZL (2013) He-Ne laser pretreatment protects wheat seedlings against cadmium-induced oxidative stress. Ecotoxicol Environ Saf 88:135–141

    Article  CAS  PubMed  Google Scholar 

  • Quintero JM, Fournier JM, Benlloch M (2007) Na+ accumulation in shoot is related to water transport in K+-starved sunflower plants but not in plants with a normal K+ status. J Plant Physiol 164:60–67

    Article  CAS  PubMed  Google Scholar 

  • Reimer RJ, Fremeau RT, Bellocchio EE, Edwards RH (2001) The senesence of excitation. Curr Opin Cell Biol 13:417–420

    Article  CAS  PubMed  Google Scholar 

  • Renault H, Roussel V, El-Amrani A, Arzel M, Renault D, Bouchéreau A, Deleu C (2010) The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol 10:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Satyanarayan V, Nair PM (1990) Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants. Phytochemistry 29:367–375

    Article  Google Scholar 

  • Schwacke R et al (1999) LeProT1, a transporter for proline, glycine betaine, and gamma-amino butyric acid in tomato pollen. Plant Cell 11:377–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD, Zhang R (2010) High temperature effects on electron and proton circuits of photosynthesis. J Integr Plant Biol 52:712–722

    Article  CAS  PubMed  Google Scholar 

  • Shelp BJ, Bown AW et al (1999) Metabolism and function of gamma aminobutyric acid. Trends Plant Sci 4:446–452

    Article  CAS  PubMed  Google Scholar 

  • Shelp BJ, Bozzo GG, Trobacher CP, Zarei A, Deyman KL, Brikis CJ (2012) Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci 193–194:130–135

    Article  PubMed  CAS  Google Scholar 

  • Shi SQ, Zheng S, Jiang ZP, Qi LW, Sun XM, Li CX, Liu JF, Xiao WF, Zhang SG (2010) Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production. Plant Cell Environ 33:149–162

    Article  CAS  PubMed  Google Scholar 

  • Song H, Xu X, Wang H, Wang H, Tao Y (2010) Exogenous gamma-aminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings. J Sci Food Agric 90:1410–1416

    Article  CAS  PubMed  Google Scholar 

  • Steponkus PL, Lanphear FO (1967) Refinement of the triphenyl tetrazolium chloride method of determining cold injury. Plant Physiol 42:1423–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabatabaie SJ, Nazari J (2007) Influence of nutrient concentration and NaCl salinity on growth, photosynthesis and essential oil content of peppermint and lemon verbena. Turk J Agric 31:245–253

    CAS  Google Scholar 

  • Taulavuori E, Hellström EK, Taulavuori K, Laine K (2001) Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus (L.) during snow removal, reacclimation and cold acclimation. J Exp Bot 52:2375–2380

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Guan B, Zhou D, Yu J, Li G, Lou Y (2014) Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.). Sci World J 2014:8

    Google Scholar 

  • Vijayakumari K, Puthur JT (2015) g-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum linn. plants subjected to PEG-induced stress. Plant Growth Regul 78:1–11

    Google Scholar 

  • Vijayakumari K, Jisha C, Puthur JT (2016) GABA/BABA priming: a means for enhancing abiotic stress tolerance potential of plants with less energy investments on defence cache. Acta Physiol Plant 38:230

    Google Scholar 

  • Wallace W, Secor J, Schrader LE (1984) Rapid accumulation of gamma-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical manipulation. Plant Physiol 75:170–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Gu W, Yao M, Xie T, Li L, Jing L, Shi W (2017) g-Aminobutyric acid imparts partial protection from salt stress injury to maize seedlings by improving photosynthesis and upregulating osmoprotectants and antioxidants. Sci Rep 7:43609

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodrow P, Ciarmiello LF, Annunziata MG, Pacifico S et al (2016) Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiol Plant 159:290–312

    Article  PubMed  CAS  Google Scholar 

  • Xiang L, Hu L, Xu W, Zhen A, Zhang L, Hu X (2016) Exogenous γ-aminobutyric acid improves the structure and function of photosystem II in muskmelon seedlings exposed to salinity-alkalinity stress. PLoS ONE 11:e0164847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu C, Zeng L, Sheng K, Chen F, Zhou T, Zheng X, Yu T (2014) g-Aminobutyric acid induces resistance against Penicillium expansum by priming of defence responses in pear fruit. Food Chem 159:29–37

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Hu J, Zhang Y, Xie XJ, Knapp A (2007) Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust J Agric Res 58:811–815

    Article  CAS  Google Scholar 

  • Zhang ZP, Miao MM, Wang CL (2015) Effects of ALA on photosynthesis, antioxidant enzyme activity, and gene expression, and regulation of proline accumulation in tomato seedlings under NaCl stress. J Plant Growth Regul 34:637–650

    Article  CAS  Google Scholar 

  • Zhu ZJ, Wei GQ, Li J, Qian QQ, Yu JQ (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    Article  CAS  Google Scholar 

  • Zörb C et al (2004) The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. Plant Sci 167:91–100

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Israil Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jalil, S.U., Ansari, M.I. (2020). Physiological Role of Gamma-Aminobutyric Acid in Salt Stress Tolerance. In: Hasanuzzaman, M., Tanveer, M. (eds) Salt and Drought Stress Tolerance in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-40277-8_13

Download citation

Publish with us

Policies and ethics