Skip to main content

High-Dimensional Neural Network Potentials for Atomistic Simulations

Part of the Lecture Notes in Physics book series (LNP,volume 968)

Abstract

High-dimensional neural network potentials, proposed by Behler and Parrinello in 2007, have become an established method to calculate potential energy surfaces with first-principles accuracy at a fraction of the computational costs. The method is general and can describe all types of chemical interactions (e.g., covalent, metallic, hydrogen bonding, and dispersion) for the entire periodic table, including chemical reactions, in which bonds break or form. Typically, many-body atom-centered symmetry functions, which incorporate the translational, rotational, and permutational invariances of the potential energy surface exactly, are used as descriptors for the atomic environments. This chapter describes how such symmetry functions and high-dimensional neural network potentials are constructed and validated.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Behler, Angew. Chem. Int. Ed. 56(42), 12828 (2017)

    CrossRef  Google Scholar 

  2. J. Behler, J. Chem. Phys. 145(17), 170901 (2016)

    CrossRef  ADS  Google Scholar 

  3. J.E. Jones, Proc. R. Soc. Lond. A 106, 463 (1924)

    CrossRef  ADS  Google Scholar 

  4. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104, 136403 (2010)

    CrossRef  ADS  Google Scholar 

  5. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108, 058301 (2012)

    CrossRef  ADS  Google Scholar 

  6. A.V. Shapeev, Multiscale Model. Simul. 14, 1153 (2016)

    CrossRef  MathSciNet  Google Scholar 

  7. R.M. Balabin, E.I. Lomakina, Phys. Chem. Chem. Phys. 13, 11710 (2011)

    CrossRef  Google Scholar 

  8. J. Behler, M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007)

    CrossRef  ADS  Google Scholar 

  9. J. Behler, J. Phys. Condens. Matter 26, 183001 (2014)

    CrossRef  Google Scholar 

  10. J. Behler, Int. J. Quantum Chem. 115(16), 1032 (2015). https://doi.org/10.1002/qua.24890

    CrossRef  Google Scholar 

  11. N. Artrith, T. Morawietz, J. Behler, Phys. Rev. B 83, 153101 (2011)

    CrossRef  ADS  Google Scholar 

  12. T. Morawietz, V. Sharma, J. Behler, J. Chem. Phys. 136, 064103 (2012)

    CrossRef  ADS  Google Scholar 

  13. M. Gastegger, J. Behler, P. Marquetand, Chem. Sci. 8, 6924 (2017)

    CrossRef  Google Scholar 

  14. J. Behler, J. Chem. Phys. 134, 074106 (2011)

    CrossRef  ADS  Google Scholar 

  15. M. Hellström, J. Behler, in Handbook of Materials Modeling: Methods: Theory and Modeling, ed. by W. Andreoni, S. Yip (Springer International Publishing, Cham, 2018), pp. 1–20. https://doi.org/10.1007/978-3-319-42913-7_56-1

    Google Scholar 

  16. T. Morawietz, A. Singraber, C. Dellago, J. Behler, Proc. Natl. Acad. Sci. U.S.A. 113(30), 8368 (2016). https://doi.org/10.1073/pnas.1602375113

    CrossRef  ADS  Google Scholar 

  17. M. Hellström, J. Behler, J. Phys. Chem. Lett. 7, 3302 (2016). https://doi.org/10.1021/acs.jpclett.6b01448

    CrossRef  Google Scholar 

  18. S.K. Natarajan, J. Behler, Phys. Chem. Chem. Phys. 18, 28704 (2016)

    CrossRef  Google Scholar 

  19. K. Shakouri, J. Behler, J. Meyer, G.J. Kroes, J. Phys. Chem. Lett. 8, 2131 (2017)

    CrossRef  Google Scholar 

  20. G. Imbalzano, A. Anelli, D. Giofré, S. Klees, J. Behler, M. Ceriotti, J. Chem. Phys. 148(24), 241730 (2018). https://doi.org/10.1063/1.5024611

    CrossRef  ADS  Google Scholar 

  21. J.S. Smith, O. Isayev, A.E. Roitberg, Chem. Sci. 8, 3192 (2017). https://doi.org/10.1039/C6SC05720A

    CrossRef  Google Scholar 

  22. M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi, P. Marquetand, J. Chem. Phys. 148(24), 241709 (2018). https://doi.org/10.1063/1.5019667

    CrossRef  ADS  Google Scholar 

  23. N. Artrith, A. Urban, G. Ceder, Phys. Rev. B 96, 014112 (2017)

    CrossRef  ADS  Google Scholar 

  24. K. Levenberg, Q. Appl. Math. 2, 164 (1944)

    Google Scholar 

  25. D.W. Marquardt, SIAM J. Appl. Math. 11, 431 (1963)

    CrossRef  Google Scholar 

  26. S. Haykin, Kalman Filtering and Neural Networks (Wiley, London, 2001)

    CrossRef  Google Scholar 

  27. J.E. Herr, K. Yao, R. McIntyre, D.W. Toth, J. Parkhill, J. Chem. Phys. 148(24), 241710 (2018). https://doi.org/10.1063/1.5020067

    CrossRef  ADS  Google Scholar 

  28. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344

    CrossRef  ADS  Google Scholar 

  29. K. Yao, J.E. Herr, D. Toth, R. Mckintyre, J. Parkhill, Chem. Sci. 9, 2261 (2018). https://doi.org/10.1039/C7SC04934J

    CrossRef  Google Scholar 

  30. J. Behler, R. Martoňák, D. Donadio, M. Parrinello, Phys. Rev. Lett. 100, 185501 (2008)

    CrossRef  ADS  Google Scholar 

  31. R.Z. Khaliullin, H. Eshet, T.D. Kühne, J. Behler, M. Parrinello, Nat. Mater. 10, 693 (2011)

    CrossRef  ADS  Google Scholar 

  32. H. Eshet, R.Z. Khaliullin, T.D. Kühne, J. Behler, M. Parrinello, Phys. Rev. Lett. 108, 115701 (2012)

    CrossRef  ADS  Google Scholar 

  33. G.C. Sosso, G. Miceli, S. Caravati, J. Behler, M. Bernasconi, Phys. Rev. B 85, 174103 (2012)

    CrossRef  ADS  Google Scholar 

  34. N. Artrith, J. Behler, Phys. Rev. B 85, 045439 (2012)

    CrossRef  ADS  Google Scholar 

  35. N. Artrith, B. Hiller, J. Behler, Phys. Status Solidi B 250, 1191 (2013)

    CrossRef  ADS  Google Scholar 

  36. N. Artrith, A.M. Kolpak, Comp. Mater. Sci. 110, 20 (2015)

    CrossRef  Google Scholar 

  37. N. Artrith, A. Urban, Comp. Mater. Sci. 114, 135 (2016)

    CrossRef  Google Scholar 

  38. J.R. Boes, M.C. Groenenboom, J.A. Keith, J.R. Kitchin, Int. J. Quantum Chem. 116, 979 (2016)

    CrossRef  Google Scholar 

  39. S. Hajinazar, J. Shao, A.N. Kolmogorov, Phys. Rev. B 95, 014114 (2017)

    CrossRef  ADS  Google Scholar 

  40. V. Quaranta, M. Hellström, J. Behler, J. Phys. Chem. Lett. 8, 1476 (2017)

    CrossRef  Google Scholar 

  41. V. Quaranta, M. Hellström, J. Behler, J. Kullgren, P.D. Mitev, K. Hermansson, J. Chem. Phys. 148(24), 241720 (2018). https://doi.org/10.1063/1.5012980

    CrossRef  ADS  Google Scholar 

  42. M. Hellström, J. Behler, J. Phys. Chem. B 121(16), 4184 (2017). https://doi.org/10.1021/acs.jpcb.7b01490

    CrossRef  Google Scholar 

  43. S. Kondati Natarajan, T. Morawietz, J. Behler, Phys. Chem. Chem. Phys. 17, 8356 (2015). https://doi.org/10.1039/C4CP04751F

    CrossRef  Google Scholar 

  44. C. Schran, F. Uhl, J. Behler, D. Marx, J. Chem. Phys. 148(10), 102310 (2018). https://doi.org/10.1063/1.4996819

    CrossRef  ADS  Google Scholar 

  45. K.T. Schütt, M. Gastegger, A. Tkatchenko, K.R. Müller, arXiv:1806.10349 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Behler .

Editor information

Editors and Affiliations

Appendix: Calculating the Force Components on an Atom

Appendix: Calculating the Force Components on an Atom

The following example illustrates how the force components on the atom O1 in a three-atom system consisting of two O atoms, O1 and O2, and one H atom, H3, are calculated. The NN for O has the architecture 2-2-1 (one hidden layer containing two nodes; two input features described by two radial symmetry functions G O:H and G O:O). Similarly, the NN for H also has the architecture 2-2-1 with two radial symmetry functions G H:H and G H:O.

$$\displaystyle \begin{aligned} {\mathbf{G}}^{\mathrm{O}}(\mathrm{O}1) = \begin{pmatrix} G^{\mathrm{O}:\mathrm{H}}(\mathrm{O}1) \\ G^{\mathrm{O}:\mathrm{O}}(\mathrm{O}1) \end{pmatrix}, \,\, {\mathbf{G}}^{\mathrm{O}}(\mathrm{O}2) = \begin{pmatrix} G^{\mathrm{O}:\mathrm{H}}(\mathrm{O}2) \\ G^{\mathrm{O}:\mathrm{O}}(\mathrm{O}2) \end{pmatrix}, \,\, {\mathbf{G}}^{\mathrm{H}}(\mathrm{H}3) = \begin{pmatrix} G^{\mathrm{H}:\mathrm{H}}(\mathrm{H}3) \\ G^{\mathrm{H}:\mathrm{O}}(\mathrm{H}3) \end{pmatrix} \end{aligned}$$

None of the symmetry functions are scaled, and R s = 0 Å. The activation function in the hidden layer for both NNs is the logistic function, \(f(x) = \frac {1}{1+\exp (-x)}\), for which the derivative can easily be expressed in terms of the function value: f′(x) = f(x)(1 − f(x)).

The total energy E is obtained as

$$\displaystyle \begin{aligned} E = E_{\mathrm{O}1} + E_{\mathrm{O}2} + E_{\mathrm{H}3} \end{aligned}$$

and the force along the α-component of O1 (with α often being one of the Cartesian x, y, or z components) is calculated as

$$\displaystyle \begin{aligned} -\frac{\partial E}{\partial \alpha_{\mathrm{O}1}} &= -\frac{\partial E_{\mathrm{O}1}}{\partial \alpha_{\mathrm{O}1}} -\frac{\partial E_{\mathrm{O}2}}{\partial \alpha_{\mathrm{O}1}} -\frac{\partial E_{\mathrm{H}3}}{\partial \alpha_{\mathrm{O}1}} \\ &= -\frac{\partial E_{\mathrm{O}1}}{\partial G^{\mathrm{O}:\mathrm{H}}(\mathrm{O}1)}\frac{\partial G^{\mathrm{O}:\mathrm{H}}(\mathrm{O}1)}{\partial \alpha_{\mathrm{O}1}} -\frac{\partial E_{\mathrm{O}1}}{\partial G^{\mathrm{O}:\mathrm{O}}(\mathrm{O}1)}\frac{\partial G^{\mathrm{O}:\mathrm{O}}(\mathrm{O}1)}{\partial \alpha_{\mathrm{O}1}} \\ & \quad -\frac{\partial E_{\mathrm{O}2}}{\partial G^{\mathrm{O}:\mathrm{H}}(\mathrm{O}2)}\frac{\partial G^{\mathrm{O}:\mathrm{H}}(\mathrm{O}2)}{\partial \alpha_{\mathrm{O}1}} -\frac{\partial E_{\mathrm{O}2}}{\partial G^{\mathrm{O}:\mathrm{O}}(\mathrm{O}2)}\frac{\partial G^{\mathrm{O}:\mathrm{O}}(\mathrm{O}2)}{\partial \alpha_{\mathrm{O}1}} \\ & \quad -\frac{\partial E_{\mathrm{H}3}}{\partial G^{\mathrm{H}:\mathrm{H}}(\mathrm{H}3)}\frac{\partial G^{\mathrm{H}:\mathrm{H}}(\mathrm{H}3)}{\partial \alpha_{\mathrm{O}1}} -\frac{\partial E_{\mathrm{H}3}}{\partial G^{\mathrm{H}:\mathrm{O}}(\mathrm{H}3)}\frac{\partial G^{\mathrm{H}:\mathrm{O}}(\mathrm{H}3)}{\partial \alpha_{\mathrm{O}1}} \end{aligned} $$

The partial derivatives of the atomic energies with respect to the NN input features depend on the NN architecture (number of input features, number of hidden layers, number of nodes per hidden layer) as well as the activation function employed in the hidden units. Here, \(y_m^{[1]}\) denotes the mth node in the first (and only) hidden layer. The NN weights are stored in matrices

$$\displaystyle \begin{aligned} {\mathbf{A}}^{[1],\mathrm{O}} = \begin{pmatrix} a_{11}^{[1],\mathrm{O}} & a_{12}^{[1],\mathrm{O}} \\[0.2cm] a_{21}^{[1],\mathrm{O}} & a_{22}^{[1],\mathrm{O}} \end{pmatrix}, \,\,\, {\mathbf{b}}^{[1], \mathrm{O}} = \begin{pmatrix} b_1^{[1],\mathrm{O}} \\[0.2cm] b_2^{[1],\mathrm{O}} \end{pmatrix}, \,\,\, {\mathbf{A}}^{[2], \mathrm{O}} = \begin{pmatrix} a_{11}^{[2],\mathrm{O}} \\[0.2cm] a_{21}^{[2],\mathrm{O}} \end{pmatrix}, \,\,\, b^{[2],\mathrm{O}} \end{aligned}$$

with a similar setup for the weights in the hydrogen NN.

$$\displaystyle \begin{aligned} y_1^{[1],\mathrm{O}1} &= f\left(a_{11}^{[1],\mathrm{O}} G^{\mathrm{O}:\mathrm{H}}(\mathrm{O}1) + a_{21}^{[1],\mathrm{O}} G^{\mathrm{O}:\mathrm{O}}(\mathrm{O}1) + b_1^{[1],\mathrm{O}}\right) \\ y_2^{[1],\mathrm{O}1} &= f\left(a_{12}^{[1],\mathrm{O}} G^{\mathrm{O}:\mathrm{H}}(\mathrm{O}1) + a_{22}^{[1],\mathrm{O}} G^{\mathrm{O}:\mathrm{O}}(\mathrm{O}1) + b_2^{[1],\mathrm{O}}\right) \\ E_{\mathrm{O}1} &= a_{11}^{[2],\mathrm{O}}y_1^{[1],\mathrm{O}1} + a_{21}^{[2],\mathrm{O}}y_2^{[1],\mathrm{O}1} + b^{[2],\mathrm{O}} \\ \frac{\partial E_{\mathrm{O}1}}{\partial G^{\mathrm{O}:\mathrm{H}}(\mathrm{O}1)} &= a_{11}^{[2],\mathrm{O}}\frac{\partial y_1^{[1],\mathrm{O}1}}{\partial G^{\mathrm{O}:\mathrm{H}}(\mathrm{O}1)} + a_{21}^{[2],\mathrm{O}}\frac{\partial y_2^{[1],\mathrm{O}1}}{\partial G^{\mathrm{O}:\mathrm{H}}(\mathrm{O}1)} \\ &= a_{11}^{[2],\mathrm{O}}a_{11}^{[1],\mathrm{O}}y_1^{[1],\mathrm{O}1}\left(1-y_1^{[1],\mathrm{O}1}\right) + a_{21}^{[2],\mathrm{O}}a_{12}^{[1],\mathrm{O}} y_2^{[1],\mathrm{O}1}\left(1-y_2^{[1],\mathrm{O}1}\right) \\ \frac{\partial E_{\mathrm{O}1}}{\partial G^{\mathrm{O}:\mathrm{O}}(\mathrm{O}1)} &= a_{11}^{[2],\mathrm{O}}a_{21}^{[1],\mathrm{O}}y_1^{[1],\mathrm{O}1}\left(1-y_1^{[1],\mathrm{O}1}\right) + a_{21}^{[2],\mathrm{O}}a_{22}^{[1],\mathrm{O}}y_2^{[1],\mathrm{O}1}\left(1-y_2^{[1],\mathrm{O}1}\right)\\ y_1^{[1],\mathrm{O}2} &= f\left(a_{11}^{[1],\mathrm{O}} G^{\mathrm{O}:\mathrm{H}}(\mathrm{O}2) + a_{21}^{[1],\mathrm{O}} G^{\mathrm{O}:\mathrm{O}}(\mathrm{O}2) + b_1^{[1],\mathrm{O}}\right) \\ y_2^{[1],\mathrm{O}2} &= f\left(a_{12}^{[1],\mathrm{O}} G^{\mathrm{O}:\mathrm{H}}(\mathrm{O}2) + a_{22}^{[1],\mathrm{O}} G^{\mathrm{O}:\mathrm{O}}(\mathrm{O}2) + b_2^{[1],\mathrm{O}}\right) \\ E_{\mathrm{O}2} &= a_{11}^{[2],\mathrm{O}}y_1^{[1],\mathrm{O}2} + a_{21}^{[2],\mathrm{O}}y_2^{[1],\mathrm{O}2} + b^{[2],\mathrm{O}} \\ \frac{\partial E_{\mathrm{O}2}}{\partial G^{\mathrm{O}:\mathrm{H}}(\mathrm{O}2)} &= a_{11}^{[2],\mathrm{O}}a_{11}^{[1],\mathrm{O}}y_1^{[1],\mathrm{O}2}\left(1-y_1^{[1],\mathrm{O}2}\right) + a_{21}^{[2],\mathrm{O}}a_{12}^{[1],\mathrm{O}} y_2^{[1],\mathrm{O}2}\left(1-y_2^{[1],\mathrm{O}2}\right) \\ \frac{\partial E_{\mathrm{O}2}}{\partial G^{\mathrm{O}:\mathrm{O}}(\mathrm{O}2)} &= a_{11}^{[2],\mathrm{O}}a_{21}^{[1],\mathrm{O}}y_1^{[1],\mathrm{O}2}\left(1-y_1^{[1],\mathrm{O}2}\right) + a_{21}^{[2],\mathrm{O}}a_{22}^{[1],\mathrm{O}}y_2^{[1],\mathrm{O}2}\left(1-y_2^{[1],\mathrm{O}2}\right)\\ y_1^{[1],\mathrm{H}3} &= f\left(a_{11}^{[1],\mathrm{H}} G^{\mathrm{H}:\mathrm{H}}(\mathrm{H}3) + a_{21}^{[1],\mathrm{H}} G^{\mathrm{H}:\mathrm{O}}(\mathrm{H}3) + b_1^{[1],\mathrm{H}}\right) \\ y_2^{[1],\mathrm{H}3} &= f\left(a_{12}^{[1],\mathrm{H}} G^{\mathrm{H}:\mathrm{H}}(\mathrm{H}3) + a_{22}^{[1],\mathrm{H}} G^{\mathrm{H}:\mathrm{O}}(\mathrm{H}3) + b_2^{[1],\mathrm{H}}\right) \\ E_{\mathrm{H}3} &= a_{11}^{[2],\mathrm{H}}y_1^{[1],\mathrm{H}3} + a_{21}^{[2],\mathrm{H}}y_2^{[1],\mathrm{H}3} + b^{[2],\mathrm{H}} \\ \frac{\partial E_{\mathrm{H}3}}{\partial G^{\mathrm{H}:\mathrm{H}}(\mathrm{H}3)} &= a_{11}^{[2],\mathrm{H}}a_{11}^{[1],\mathrm{H}}y_1^{[1],\mathrm{H}3}\left(1-y_1^{[1],\mathrm{H}3}\right) + a_{21}^{[2],\mathrm{H}}a_{12}^{[1],\mathrm{H}}y_2^{[1],\mathrm{H}3}\left(1-y_2^{[1],\mathrm{H}3}\right) \\ \frac{\partial E_{\mathrm{H}3}}{\partial G^{\mathrm{H}:\mathrm{O}}(\mathrm{H}3)} &= a_{11}^{[2],\mathrm{H}}a_{21}^{[1],\mathrm{H}}y_1^{[1],\mathrm{H}3}\left(1-y_1^{[1],\mathrm{H}3}\right) + a_{21}^{[2],\mathrm{H}}a_{22}^{[1],\mathrm{H}}y_2^{[1],\mathrm{H}3}\left(1-y_2^{[1],\mathrm{H}3}\right) \end{aligned} $$

The force component along α O1 thus depends on, for example, \(\frac {\partial E_{\mathrm{O}2}}{\partial G^{\mathrm{O}:\mathrm{O}}(\mathrm{O}2)}\), which in turn depends on \(y_1^{[1],\mathrm{O}2}\) and \(y_2^{[1],\mathrm{O}2}\), which depend on G O:H(O2) and G O:O(O2). Thus all symmetry functions on the atom O2, and consequently the entire environment within the cutoff sphere around O2, contribute to the force acting on the atom O1.

The partial derivatives of the radial symmetry functions with respect to the coordinate α O1 become

$$\displaystyle \begin{aligned} \frac{\partial G^{\mathrm{O}:\mathrm{H}}(\mathrm{O}1)}{\partial \alpha_{\mathrm{O}1}} & = \mathrm{e}^{-\eta R_{\mathrm{O}1\mathrm{H}3}^2} \left( -2\eta R_{\mathrm{O}1\mathrm{H}3}{f_{\mathrm{c}}}(R_{\mathrm{O}1\mathrm{H}3})\frac{\partial R_{\mathrm{O}1\mathrm{H}3}}{\partial \alpha_{\mathrm{O}1}} + \frac{\partial {f_{\mathrm{c}}}(R_{\mathrm{O}1\mathrm{H}3})}{\partial \alpha_{\mathrm{O}1}} \right) \\ \frac{\partial G^{\mathrm{O}:\mathrm{O}}(\mathrm{O}1)}{\partial \alpha_{\mathrm{O}1}} & = \mathrm{e}^{-\eta R_{\mathrm{O}1\mathrm{O}2}^2} \left( -2\eta R_{\mathrm{O}1\mathrm{O}2}{f_{\mathrm{c}}}(R_{\mathrm{O}1\mathrm{O}2})\frac{\partial R_{\mathrm{O}1\mathrm{O}2}}{\partial \alpha_{\mathrm{O}1}} + \frac{\partial {f_{\mathrm{c}}}(R_{\mathrm{O}1\mathrm{O}2})}{\partial \alpha_{\mathrm{O}1}} \right) \\ \frac{\partial G^{\mathrm{O}:\mathrm{H}}(\mathrm{O}2)}{\partial \alpha_{\mathrm{O}1}} & = \mathrm{e}^{-\eta R_{\mathrm{O}2\mathrm{H}3}^2} \left( -2\eta R_{\mathrm{O}2\mathrm{H}3}{f_{\mathrm{c}}}(R_{\mathrm{O}2\mathrm{H}3})\frac{\partial R_{\mathrm{O}2\mathrm{H}3}}{\partial \alpha_{\mathrm{O}1}} + \frac{\partial {f_{\mathrm{c}}}(R_{\mathrm{O}2\mathrm{H}3})}{\partial \alpha_{\mathrm{O}1}} \right) \\ & = 0 \\ \frac{\partial G^{\mathrm{O}:\mathrm{O}}(\mathrm{O}2)}{\partial \alpha_{\mathrm{O}1}} & = \mathrm{e}^{-\eta R_{\mathrm{O}1\mathrm{O}2}^2} \left( -2\eta R_{\mathrm{O}1\mathrm{O}2}{f_{\mathrm{c}}}(R_{\mathrm{O}1\mathrm{O}2})\frac{\partial R_{\mathrm{O}1\mathrm{O}2}}{\partial \alpha_{\mathrm{O}1}} + \frac{\partial {f_{\mathrm{c}}}(R_{\mathrm{O}1\mathrm{O}2})}{\partial \alpha_{\mathrm{O}1}} \right) \\ \frac{\partial G^{\mathrm{H}:\mathrm{H}}(\mathrm{H}3)}{\partial \alpha_{\mathrm{O}1}} & = 0 \\ \frac{\partial G^{\mathrm{H}:\mathrm{O}}(\mathrm{H}3)}{\partial \alpha_{\mathrm{O}1}} & = \mathrm{e}^{-\eta R_{\mathrm{O}1\mathrm{H}3}^2} \left( -2\eta R_{\mathrm{O}1\mathrm{H}3}{f_{\mathrm{c}}}(R_{\mathrm{O}1\mathrm{H}3})\frac{\partial R_{\mathrm{O}1\mathrm{H}3}}{\partial \alpha_{\mathrm{O}1}} + \frac{\partial {f_{\mathrm{c}}}(R_{\mathrm{O}1\mathrm{H}3})}{\partial \alpha_{\mathrm{O}1}} \right) \\ & \quad + \mathrm{e}^{-\eta R_{\mathrm{O}2\mathrm{H}3}^2} \left( -2\eta R_{\mathrm{O}2\mathrm{H}3}{f_{\mathrm{c}}}(R_{\mathrm{O}2\mathrm{H}3})\frac{\partial R_{\mathrm{O}2\mathrm{H}3}}{\partial \alpha_{\mathrm{O}1}} + \frac{\partial {f_{\mathrm{c}}}(R_{\mathrm{O}2\mathrm{H}3})}{\partial \alpha_{\mathrm{O}1}} \right) \\ & = \mathrm{e}^{-\eta R_{\mathrm{O}1\mathrm{H}3}^2} \left( -2\eta R_{\mathrm{O}1\mathrm{H}3}{f_{\mathrm{c}}}(R_{\mathrm{O}1\mathrm{H}3})\frac{\partial R_{\mathrm{O}1\mathrm{H}3}}{\partial \alpha_{\mathrm{O}1}} + \frac{\partial {f_{\mathrm{c}}}(R_{\mathrm{O}1\mathrm{H}3})}{\partial \alpha_{\mathrm{O}1}} \right), \end{aligned} $$

where η is the η-value of the pertinent symmetry function. All the above partial derivatives are calculated as sums over neighbors, but in this example, there are only 1 H and 1 O neighbor around each O atom. There are two O neighbors around H3, but one of the terms in the sum defining \(\frac {\partial G^{\mathrm{H}:\mathrm{O}}(\mathrm{H}3)}{\partial \alpha _{\mathrm{O}1}}\) becomes 0, since the position of O1 does not affect the distance between O2 and H3.

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hellström, M., Behler, J. (2020). High-Dimensional Neural Network Potentials for Atomistic Simulations. In: Schütt, K., Chmiela, S., von Lilienfeld, O., Tkatchenko, A., Tsuda, K., Müller, KR. (eds) Machine Learning Meets Quantum Physics. Lecture Notes in Physics, vol 968. Springer, Cham. https://doi.org/10.1007/978-3-030-40245-7_13

Download citation