Skip to main content

Lessons Learned from Proteasome Inhibitors, the Paradigm for Targeting Protein Homeostasis in Cancer

  • Chapter
  • First Online:
HSF1 and Molecular Chaperones in Biology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1243))

Abstract

Targeting aberrant protein homeostasis (proteostasis) in cancer is an attractive therapeutic strategy. However, this approach has thus far proven difficult to bring to clinical practice, with one major exception: proteasome inhibition. These small molecules have dramatically transformed outcomes for patients with the blood cancer multiple myeloma. However, these agents have failed to make an impact in more common solid tumors. Major questions remain about whether this therapeutic strategy can be extended to benefit even more patients. Here we discuss the role of the proteasome in normal and tumor cells, the basic, preclinical, and clinical development of proteasome inhibitors, and mechanisms proposed to govern both intrinsic and acquired resistance to these drugs. Years of study of both the mechanism of action and modes of resistance to proteasome inhibitors reveal these processes to be surprisingly complex. Here, we attempt to draw lessons from experience with proteasome inhibitors that may be relevant for other compounds targeting proteostasis in cancer, as well as extending the reach of proteasome inhibitors beyond blood cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Alvear D et al (2015) Paradoxical resistance of multiple myeloma to proteasome inhibitors by decreased levels of 19S proteasomal subunits. elife 4:e08153

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams J (2002) Development of the proteasome inhibitor PS-341. Oncologist 7(1):9–16

    Article  PubMed  CAS  Google Scholar 

  • Adams J et al (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59(11):2615–2622

    PubMed  CAS  Google Scholar 

  • Asano S et al (2015) Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science 347(6220):439–442

    Article  PubMed  CAS  Google Scholar 

  • Barrio S et al (2019) Spectrum and functional validation of PSMB5 mutations in multiple myeloma. Leukemia 33(2):447–456

    Article  PubMed  CAS  Google Scholar 

  • Barwick BG, Gupta VA, Vertino PM, Boise LH (2019) Cell of origin and genetic alterations in the pathogenesis of multiple myeloma. Front Immunol. ePub ahead of print

    Google Scholar 

  • Baugh JM, Viktorova EG, Pilipenko EV (2009) Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination. J Mol Biol 386(3):814–827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ben-David U et al (2018) Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560(7718):325–330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Besse A et al (2018) Carfilzomib resistance due to ABCB1/MDR1 overexpression is overcome by nelfinavir and lopinavir in multiple myeloma. Leukemia 32(2):391–401

    Article  PubMed  CAS  Google Scholar 

  • Besse A et al (2019) Proteasome inhibition in multiple myeloma: head-to-head comparison of currently available proteasome inhibitors. Cell Chem Biol 26(3):340–351. e343

    Article  PubMed  CAS  Google Scholar 

  • Bianchi G, Munshi NC (2015) Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 125(20):3049–3058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bianchi G et al (2009) The proteasome load versus capacity balance determines apoptotic sensitivity of multiple myeloma cells to proteasome inhibition. Blood 113(13):3040–3049

    Article  PubMed  CAS  Google Scholar 

  • Boes B et al (1994) Interferon gamma stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasomes. J Exp Med 179(3):901–909

    Article  PubMed  CAS  Google Scholar 

  • Carrasco DR et al (2007) The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell 11(4):349–360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cenci S et al (2012) Pivotal advance: protein synthesis modulates responsiveness of differentiating and malignant plasma cells to proteasome inhibitors. J Leukoc Biol 92(5):921–931

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Burns TF (2017) Targeting heat shock proteins in Cancer: a promising therapeutic approach. Int J Mol Sci 18(9):1978

    Article  PubMed Central  CAS  Google Scholar 

  • Chauhan D et al (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8(5):407–419

    Article  PubMed  CAS  Google Scholar 

  • Chauhan D et al (2011) In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clin Cancer Res 17(16):5311–5321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chauhan D et al (2012) A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 22(3):345–358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choudhry P, Galligan D, Wiita AP (2018) Seeking convergence and cure with new myeloma therapies. Trends Cancer 4(8):567–582

    Article  PubMed  PubMed Central  Google Scholar 

  • Cromm PM, Crews CM (2017) The proteasome in modern drug discovery: second life of a highly valuable drug target. ACS Cent Sci 3(8):830–838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cvek B, Dvorak Z (2011) The ubiquitin-proteasome system (UPS) and the mechanism of action of bortezomib. Curr Pharm Des 17(15):1483–1499

    Article  PubMed  CAS  Google Scholar 

  • de Bruin G et al (2016) A set of activity-based probes to visualize human (Immuno)proteasome activities. Angew Chem 55(13):4199–4203

    Article  CAS  Google Scholar 

  • Demo SD et al (2007) Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 67(13):6383–6391

    Article  PubMed  CAS  Google Scholar 

  • Di Marzo L et al (2016) Microenvironment drug resistance in multiple myeloma: emerging new players. Oncotarget 7(37):60698–60711

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimopoulos MA et al (2015) Retrospective matched-pairs analysis of bortezomib plus dexamethasone versus bortezomib monotherapy in relapsed multiple myeloma. Haematologica 100(1):100–106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dimopoulos MA et al (2016) Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): a randomised, phase 3, open-label, multicentre study. Lancet Oncol 17(1):27–38

    Article  PubMed  CAS  Google Scholar 

  • Dimopoulos MA et al (2017a) Carfilzomib or bortezomib in relapsed or refractory multiple myeloma (ENDEAVOR): an interim overall survival analysis of an open-label, randomised, phase 3 trial. Lancet Oncol 18(10):1327–1337

    Article  PubMed  CAS  Google Scholar 

  • Dimopoulos MA et al (2017b) Cardiac and renal complications of carfilzomib in patients with multiple myeloma. Blood Adv 1(7):449–454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong Y et al (2019) Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome. Nature 565(7737):49–55

    Article  PubMed  CAS  Google Scholar 

  • Drexler HG, Matsuo Y (2000) Malignant hematopoietic cell lines: in vitro models for the study of multiple myeloma and plasma cell leukemia. Leuk Res 24(8):681–703

    Article  PubMed  CAS  Google Scholar 

  • Durie BG et al (2017) Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. Lancet 389(10068):519–527

    Article  PubMed  CAS  Google Scholar 

  • Dytfeld D et al (2016) Comparative proteomic profiling of refractory/relapsed multiple myeloma reveals biomarkers involved in resistance to bortezomib-based therapy. Oncotarget 7(35):56726–56736

    Article  PubMed  PubMed Central  Google Scholar 

  • Erales J, Coffino P (2014) Ubiquitin-independent proteasomal degradation. Biochim Biophys Acta 1843(1):216–221

    Article  PubMed  CAS  Google Scholar 

  • Ettari R, Previti S, Bitto A, Grasso S, Zappala M (2016) Immunoproteasome-selective inhibitors: a promising strategy to treat hematologic malignancies, autoimmune and inflammatory diseases. Curr Med Chem 23(12):1217–1238

    Article  PubMed  CAS  Google Scholar 

  • Fennell DA, Chacko A, Mutti L (2008) BCL-2 family regulation by the 20S proteasome inhibitor bortezomib. Oncogene 27(9):1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Ferguson I et al (2018) Novel allosteric inhibitors of heat shock protein 70 as agents to probe protein homeostasis and overcome proteasome inhibitor resistance in multiple myeloma. Blood (ASH Abstract) 132:3212

    Article  Google Scholar 

  • Fisher RI et al (2006) Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol 24(30):4867–4874

    Article  PubMed  Google Scholar 

  • Franke M et al (2016) Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538(7624):265–269

    Article  PubMed  CAS  Google Scholar 

  • Gandolfi S et al (2017) The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev 36(4):561–584

    Article  PubMed  CAS  Google Scholar 

  • Gass JN, Gifford NM, Brewer JW (2002) Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J Biol Chem 277(50):49047–49054

    Article  PubMed  CAS  Google Scholar 

  • Gavory G et al (2018) Discovery and characterization of highly potent and selective allosteric USP7 inhibitors. Nat Chem Biol 14(2):118–125

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AL (2012) Development of proteasome inhibitors as research tools and cancer drugs. J Cell Biol 199(4):583–588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harper JW, Bennett EJ (2016) Proteome complexity and the forces that drive proteome imbalance. Nature 537(7620):328–338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  • Hetz C, Papa FR (2018) The unfolded protein response and cell fate control. Mol Cell 69(2):169–181

    Article  PubMed  CAS  Google Scholar 

  • Hideshima T et al (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61(7):3071–3076

    PubMed  CAS  Google Scholar 

  • Hideshima T et al (2002) NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 277(19):16639–16647

    Article  PubMed  CAS  Google Scholar 

  • Hideshima T, Richardson PG, Anderson KC (2011) Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma. Mol Cancer Ther 10(11):2034–2042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang Z et al (2014) Efficacy of therapy with bortezomib in solid tumors: a review based on 32 clinical trials. Future Oncol 10(10):1795–1807

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Luan B, Wu J, Shi Y (2016) An atomic structure of the human 26S proteasome. Nat Struct Mol Biol 23(9):778–785

    Article  PubMed  CAS  Google Scholar 

  • Huang HH et al (2020) Proteasome inhibitor-induced modulation reveals the spliceosome as a specific therapeutic vulnerability in multiple myeloma. Nat Commun. In press

    Google Scholar 

  • Iurlaro R, Munoz-Pinedo C (2016) Cell death induced by endoplasmic reticulum stress. FEBS J 283(14):2640–2652

    Article  PubMed  CAS  Google Scholar 

  • Jagannath S et al (2004) A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 127(2):165–172

    Article  PubMed  CAS  Google Scholar 

  • Jariel-Encontre I, Bossis G, Piechaczyk M (2008) Ubiquitin-independent degradation of proteins by the proteasome. Biochim Biophys Acta 1786(2):153–177

    PubMed  CAS  Google Scholar 

  • Kenific CM, Debnath J (2015) Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol 25(1):37–45

    Article  PubMed  CAS  Google Scholar 

  • Kish-Trier E, Hill CP (2013) Structural biology of the proteasome. Annu Rev Biophys 42:29–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kleiger G, Mayor T (2014) Perilous journey: a tour of the ubiquitin-proteasome system. Trends Cell Biol 24(6):352–359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kraus M et al (2015) The novel beta2-selective proteasome inhibitor LU-102 synergizes with bortezomib and carfilzomib to overcome proteasome inhibitor resistance of myeloma cells. Haematologica 100(10):1350–1360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuhn DJ et al (2007) Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 110(9):3281–3290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kupperman E et al (2010) Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res 70(5):1970–1980

    Article  PubMed  CAS  Google Scholar 

  • Lander GC et al (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482(7384):186–191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lasker K et al (2012) Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci U S A 109(5):1380–1387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Moigne R et al (2017) The p97 inhibitor CB-5083 is a unique disrupter of protein homeostasis in models of Multiple Myeloma. Mol Cancer Ther 16(11):2375–2386

    Article  PubMed  CAS  Google Scholar 

  • Leleu X et al (2019) Role of proteasome inhibitors in relapsed and/or refractory multiple myeloma. Clin Lymphoma Myeloma Leuk 19(1):9–22

    Article  PubMed  Google Scholar 

  • Leung-Hagesteijn C et al (2013) Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell 24(3):289–304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levy JMM, Towers CG, Thorburn A (2017) Targeting autophagy in cancer. Nat Rev Cancer 17(9):528–542

    Article  PubMed  CAS  Google Scholar 

  • Li C, Li R, Grandis JR, Johnson DE (2008) Bortezomib induces apoptosis via Bim and Bik up-regulation and synergizes with cisplatin in the killing of head and neck squamous cell carcinoma cells. Mol Cancer Ther 7(6):1647–1655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X et al (2015) Validation of the Hsp70-Bag3 protein-protein interaction as a potential therapeutic target in cancer. Mol Cancer Ther 14(3):642–648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ling SC et al (2012) Response of myeloma to the proteasome inhibitor bortezomib is correlated with the unfolded protein response regulator XBP-1. Haematologica 97(1):64–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu T, Zhou L, Li D, Andl T, Zhang Y (2019a) Cancer-associated fibroblasts build and secure the tumor microenvironment. Front Cell Dev Biol 7:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y et al (2019b) Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nat Biotechnol 37(3):314–322

    Article  PubMed  CAS  Google Scholar 

  • Lovly CM, Shaw AT (2014) Molecular pathways: resistance to kinase inhibitors and implications for therapeutic strategies. Clin Cancer Res 20(9):2249–2256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manier S, Kawano Y, Bianchi G, Roccaro AM, Ghobrial IM (2016) Cell autonomous and microenvironmental regulation of tumor progression in precursor states of multiple myeloma. Curr Opin Hematol 23(4):426–433

    Article  PubMed  CAS  Google Scholar 

  • Matthews GM et al (2016) NF-kappaB dysregulation in multiple myeloma. Semin Cancer Biol 39:68–76

    Article  PubMed  CAS  Google Scholar 

  • Mitra AK et al (2017) A gene expression signature distinguishes innate response and resistance to proteasome inhibitors in multiple myeloma. Blood Cancer J 7(6):e581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitsiades N et al (2002) Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A 99(22):14374–14379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741

    Article  PubMed  CAS  Google Scholar 

  • Moore PC et al (2019) Parallel signaling through IRE1α and PERK regulates pancreatic neuroendocrine tumor growth and survival. Cancer Res 79(24):6190–6203

    Google Scholar 

  • Mulligan G et al (2007) Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood 109(8):3177–3188

    Article  PubMed  CAS  Google Scholar 

  • Nussbaum AK et al (1998) Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1. Proc Natl Acad Sci U S A 95(21):12504–12509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Connor OA et al (2009) A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfilzomib (PR-171) in patients with hematologic malignancies. Clin Cancer Res 15(22):7085–7091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Obeng EA et al (2006) Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107(12):4907–4916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oerlemans R et al (2008) Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood 112(6):2489–2499

    Article  PubMed  CAS  Google Scholar 

  • Paiva B et al (2016) Phenotypic and genomic analysis of multiple myeloma minimal residual disease tumor cells: a new model to understand chemoresistance. Blood 127(15):1896–1906

    Article  PubMed  CAS  Google Scholar 

  • Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78(5):773–785

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos KP et al (2013) A phase I/II study of carfilzomib 2-10-min infusion in patients with advanced solid tumors. Cancer Chemother Pharmacol 72(4):861–868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peters JM, Cejka Z, Harris JR, Kleinschmidt JA, Baumeister W (1993) Structural features of the 26 S proteasome complex. J Mol Biol 234(4):932–937

    Article  PubMed  CAS  Google Scholar 

  • Petrucci MT, Finsinger P, Chisini M, Gentilini F (2014) Subcutaneous bortezomib for multiple myeloma treatment: patients’ benefits. Patient Prefer Adherence 8:939–946

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravid T, Hochstrasser M (2008) Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 9(9):679–690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rechsteiner M, Hill CP (2005) Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 15(1):27–33

    Article  PubMed  CAS  Google Scholar 

  • Reece DE et al (2009) Weekly and twice-weekly bortezomib in patients with systemic AL amyloidosis: results of a phase 1 dose-escalation study. Blood 114(8):1489–1497

    Article  PubMed  CAS  Google Scholar 

  • Richardson PG et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348(26):2609–2617

    Article  PubMed  CAS  Google Scholar 

  • Richardson PG et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352(24):2487–2498

    Article  PubMed  CAS  Google Scholar 

  • Roeten MSF, Cloos J, Jansen G (2018) Positioning of proteasome inhibitors in therapy of solid malignancies. Cancer Chemother Pharmacol 81(2):227–243

    Article  PubMed  CAS  Google Scholar 

  • San Miguel JF et al (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359(9):906–917

    Article  PubMed  CAS  Google Scholar 

  • Saric T, Graef CI, Goldberg AL (2004) Pathway for degradation of peptides generated by proteasomes: a key role for thimet oligopeptidase and other metallopeptidases. J Biol Chem 279(45):46723–46732

    Article  PubMed  CAS  Google Scholar 

  • Schubert U et al (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404(6779):770–774

    Article  PubMed  CAS  Google Scholar 

  • Shaffer AL et al (2004) XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21(1):81–93

    Article  PubMed  CAS  Google Scholar 

  • Shanker A, Dikov MM, Carbone DP (2015) Promise of immunotherapy in lung Cancer. Prog Tumor Res 42:95–109

    Article  PubMed  Google Scholar 

  • Shao H et al (2018) Exploration of Benzothiazole Rhodacyanines as allosteric inhibitors of protein-protein interactions with heat shock protein 70 (Hsp70). J Med Chem 61(14):6163–6177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siegel DS et al (2018) Improvement in overall survival with Carfilzomib, Lenalidomide, and dexamethasone in patients with relapsed or refractory multiple myeloma. J Clin Oncol 36(8):728–734

    Article  PubMed  CAS  Google Scholar 

  • Sijts EJ, Kloetzel PM (2011) The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell Mol Life Sci 68(9):1491–1502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sledz P, Baumeister W (2016) Structure-driven developments of 26S proteasome inhibitors. Annu Rev Pharmacol Toxicol 56:191–209

    Article  PubMed  CAS  Google Scholar 

  • Soriano GP et al (2016) Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism. Leukemia 30(11):2198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spencer A et al (2018a) Daratumumab plus bortezomib and dexamethasone versus bortezomib and dexamethasone in relapsed or refractory multiple myeloma: updated analysis of CASTOR. Haematologica 103(12):2079–2087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spencer A et al (2018b) A phase 1 clinical trial evaluating marizomib, pomalidomide and low-dose dexamethasone in relapsed and refractory multiple myeloma (NPI-0052-107): final study results. Br J Haematol 180(1):41–51

    Article  PubMed  CAS  Google Scholar 

  • Stewart AK et al (2015) Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med 372(2):142–152

    Article  PubMed  CAS  Google Scholar 

  • Strauss SJ et al (2007) The proteasome inhibitor bortezomib acts independently of p53 and induces cell death via apoptosis and mitotic catastrophe in B-cell lymphoma cell lines. Cancer Res 67(6):2783–2790

    Article  PubMed  CAS  Google Scholar 

  • Suraweera A, Munch C, Hanssum A, Bertolotti A (2012) Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol Cell 48(2):242–253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka K (2009) The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci 85(1):12–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian Z et al (2014) A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood 123(5):706–716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Traenckner EB, Wilk S, Baeuerle PA (1994) A proteasome inhibitor prevents activation of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is still bound to NF-kappa B. EMBO J 13(22):5433–5441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Treon SP et al (2009) Primary therapy of Waldenstrom macroglobulinemia with bortezomib, dexamethasone, and rituximab: WMCTG clinical trial 05-180. J Clin Oncol 27(23):3830–3835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsherniak A et al (2017) Defining a Cancer dependency map. Cell 170(3):564–576. e516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsvetkov P et al (2015) Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome. elife 4:e08467

    Article  PubMed Central  Google Scholar 

  • Tsvetkov P et al (2017) Suppression of 19S proteasome subunits marks emergence of an altered cell state in diverse cancers. Proc Natl Acad Sci U S A 114(2):382–387

    Article  PubMed  CAS  Google Scholar 

  • Tsvetkov P et al (2018) Oncogenic addiction to high 26S proteasome level. Cell Death Dis 9(7):773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsvetkov P et al (2019) Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol 15(7):681–689

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ustrell V, Pratt G, Rechsteiner M (1995) Effects of interferon gamma and major histocompatibility complex-encoded subunits on peptidase activities of human multicatalytic proteases. Proc Natl Acad Sci U S A 92(2):584–588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • von Mikecz A (2006) The nuclear ubiquitin-proteasome system. J Cell Sci 119(Pt 10):1977–1984

    Article  CAS  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086

    Article  PubMed  CAS  Google Scholar 

  • Waxman AJ et al (2018) Carfilzomib-associated cardiovascular adverse events: a systematic review and meta-analysis. JAMA Oncol 4(3):e174519

    Article  PubMed  Google Scholar 

  • Weyburne ES et al (2017) Inhibition of the proteasome beta2 site sensitizes triple-negative breast Cancer cells to beta5 inhibitors and suppresses Nrf1 activation. Cell Chem Biol 24(2):218–230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wiita AP et al (2013) Global cellular response to chemotherapy-induced apoptosis. elife 2:e01236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winter MB et al (2017) Immunoproteasome functions explained by divergence in cleavage specificity and regulation. elife 6:e27364

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolfe AL et al (2014) RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature 513(7516):65–70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshimura T et al (1993) Molecular characterization of the “26S” proteasome complex from rat liver. J Struct Biol 111(3):200–211

    Article  PubMed  CAS  Google Scholar 

  • Zhang XD et al (2016) Tight junction protein 1 modulates proteasome capacity and proteasome inhibitor sensitivity in multiple myeloma via EGFR/JAK1/STAT3 Signaling. Cancer Cell 29(5):639–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao J, Zhai B, Gygi SP, Goldberg AL (2015) mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc Natl Acad Sci U S A 112(52):15790–15797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

A.P.W. would like to acknowledge research support from the Multiple Myeloma Research Foundation, Gabrielle’s Angels Foundation for Cancer Research, Helen Diller Family Comprehensive Cancer Center at UCSF, and NIH grants K08 CA184116 and R01 CA226851 for supporting related work in his laboratory.

Disclosures

A.P.W. is a member of the scientific advisory board and equity holder in Indapta Therapeutics and Protocol Intelligence. A.P.W. has received past research funding from TeneoBio, Sutro BioPharma, and Quadriga Biosciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun P. Wiita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kambhampati, S., Wiita, A.P. (2020). Lessons Learned from Proteasome Inhibitors, the Paradigm for Targeting Protein Homeostasis in Cancer. In: Mendillo, M.L., Pincus, D., Scherz-Shouval, R. (eds) HSF1 and Molecular Chaperones in Biology and Cancer. Advances in Experimental Medicine and Biology, vol 1243. Springer, Cham. https://doi.org/10.1007/978-3-030-40204-4_10

Download citation

Publish with us

Policies and ethics