Skip to main content

Ensuring the Reliability of Separation Equipment Based on Parameter Identification of the Operation Process

  • Chapter
  • First Online:
New Approaches in Management of Smart Manufacturing Systems

Abstract

The research paper is aimed at improving the scientific and methodological approach for ensuring the reliability of technological equipment of energy-efficient modular separation devices by means of identifying the parameters of the refined mathematical models describing the main and secondary hydromechanical processes. Based on the critical review of the recent achievements in the field of separation and purification technologies, it is shown that combining vibrational-inertial separation allows one to increase both the separation efficiency and a range of the implementation of the corresponding technological equipment. Due to the object of study which is the separation processes of multicomponent heterogeneous systems, the assumption is that the separation efficiency can be increased by the proper organization of flow modes. As a result, the refined mathematical model of the gas-liquid flow is proposed. This model allows one to evaluate the total response of the dispersed phase on the vibrating wall and to determine the trajectories of dropping particles. Finally, the methodology for determining the separation time and the effective length of gutters for capturing dispersed liquid is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, J., Zhang, Y., Chen, Y., Chen, X.: Simulation of gas-liquid separation characteristics of waxy natural gas in axial flow guide vane cyclone separator. Petrochem. Equip. 48(4), 1–8 (2019). https://doi.org/10.3969/j.issn.1000-7466.2019.04.001

    Article  Google Scholar 

  2. Khmelev, V.N., Shalunov, A.V., Nesterov, V.A., Golykh, R.N., Dorovskikh, R.S.: Increase of separation efficiency in the inertial gas-purifying equipment by high-intensity ultrasonic vibrations. In: International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM, pp. 233–239 (2014). https://doi.org/10.1109/EDM.2014.6882519

    Chapter  Google Scholar 

  3. Liaposhchenko, О.О., Sklabinskyi, V.I., Zavialov, V.L., Pavlenko, I.V., Nastenko, O.V., Demianenko, M.M.: Appliance of inertial gas-dynamic separation of gas dispersion flaws in the curvilinear convergent-divergent channels for compressor equipment reliability improvement. IOP Conf. Ser. Mater. Sci. Eng. 233, 012025 (2017). https://doi.org/10.1088/1757-899X/233/1/012025

    Article  Google Scholar 

  4. Plyatsuk, L.D., Ablieieva, I.Y., Vaskin, R.A., Yeskendirov, M., Hurets, L.L.: Mathematical modeling of gas-cleaning equipment with a highly developed phase contact surface. J. Eng. Sci. 5(2), F19–F24 (2018). https://doi.org/10.21272/jes.2018.5(2).f4

    Article  Google Scholar 

  5. Fang, D., Li, L., Li, J., Wang, M., Yu, H., Zhang, J., Qiu, S., Tian, W., Su, G.H.: Full-scale numerical study on the thermal-hydraulic characteristics of steam-water separation system in an advanced PWR UTSG. Part 2: Droplets separation process. Prog. Nucl. Energy. 118, 103139 (2020). https://doi.org/10.1016/j.pnucene.2019.103139

    Article  Google Scholar 

  6. Fang, D., Wang, M., Duan, Y., Li, J., Qiu, G., Tian, W., Zuo, C., Su, G.H., Qiu, S.: Full-scale numerical study on the flow characteristics and mal-distribution phenomena in SG steam-water separation system of an advanced PWR. Prog. Nucl. Energy. 118, 103075 (2020). https://doi.org/10.1016/j.pnucene.2019.103075

    Article  Google Scholar 

  7. Pan, Y., Liu, L., Zhang, Z., Huang, S., Hao, Z., Zhao, X.: Surfaces with controllable super-wettability and applications for smart oil-water separation. Chem. Eng. J. 378, 122178 (2019). https://doi.org/10.1016/j.cej.2019.122178

    Article  Google Scholar 

  8. Mao, Y., Bu, X., Peng, Y., Tian, F., Xie, G.: Effects of simultaneous ultrasonic treatment on the separation selectivity and flotation kinetics of high-ash lignite. Fuel. 259, 116270 (2020). https://doi.org/10.1016/j.fuel.2019.116270

    Article  Google Scholar 

  9. He, S., Zhan, Y., Zhao, S., Lin, L., Hu, J., Zhang, G., Zhou, M.: Design of stable super-hydrophobic/super-oleophilic 3D carbon fiber felt decorated with Fe3O4 nanoparticles: facial strategy, magnetic drive and continuous oil/water separation in harsh environments. Appl. Surf. Sci. 494, 1072–1082 (2019). https://doi.org/10.1016/j.apsusc.2019.07.258

    Article  Google Scholar 

  10. Tianxing, Z., Khezzar, L., AlShehhi, M., Xia, Y., Hardalupas, Y.: Experimental investigation of air–water turbulent swirling flow of relevance to phase separation equipment. Int. J. Multiphase Flow. 121, 103110 (2019). https://doi.org/10.1016/j.ijmultiphaseflow.2019.103110

    Article  Google Scholar 

  11. Khovanskyi, S., Pavlenko, I., Pitel, J., Mizakova, J., Ochowiak, M., Grechka, I.: Solving the coupled aerodynamic and thermal problem for modeling the air distribution devices with perforated plates. Energies. 12(18), 3488 (2019). https://doi.org/10.3390/en12183488

    Article  Google Scholar 

  12. Jansson, M., Andersson, M., Pettersson, M., Karlsson, M.: Experimental assessment of water hammer-induced column separation in oil-hydraulic pipe flow. J. Fluids Eng. Trans. ASME. 141(10), 101107 (2019). https://doi.org/10.1115/1.4043854

    Article  Google Scholar 

  13. Gupta, N.K., Choudhary, B.C., Gupta, A., Achary, S.N., Sengupta, A.: Graphene-based adsorbents for the separation of F-metals from waste solutions: a review. J. Mol. Liq. 289, 111121 (2019). https://doi.org/10.1016/j.molliq.2019.111121

    Article  Google Scholar 

  14. Plyatsuk, L.D., Roy, I.O., Chernysh, Y.Y., Kozii, I.S., Hurets, L.L., Musabekov, A.A.: Clarification of the recent scientific approaches in magnetic water treatment. J. Eng. Sci. 6(1), F12–F18 (2019). https://doi.org/10.21272/jes.2019.6(1).f3

    Article  Google Scholar 

  15. Wang, F., Pi, J., Li, J., Song, F., Feng, R., Wang, X., Wang, Y.: Highly-efficient separation of oil and water enabled by a silica nanoparticle coating with pH-triggered tunable surface wettability. J. Colloid Interface Sci. 557, 65–75 (2019). https://doi.org/10.1016/j.jcis.2019.08.114

    Article  Google Scholar 

  16. Ochowiak, M., Wlodarczak, S., Pavlenko, I., Janecki, D., Krupinska, A., Markowska, M.: Study on interfacial surface in modified spray tower. Processes. 7(8), 532 (2019). https://doi.org/10.3390/pr7080532

    Article  Google Scholar 

  17. Lytvynenko, A., Yukhymenko, M., Pavlenko, I., Pitel, J., Mizakova, J., Lytvynenko, O., Ostroha, R., Bocko, J.: Ensuring the reliability of pneumatic classification process for granular material in a rhomb-shaped apparatus. Appl. Sci. (Switzerland). 9(8), 1604 (2019). https://doi.org/10.3390/app9081604

    Article  Google Scholar 

  18. Portillo, E., Alonso-Farinas, B., Vega, F., Cano, M., Navarrete, B.: Alternatives for oxygen-selective membrane systems and their integration into the oxy-fuel combustion process: a review. Sep. Purif. Technol. 229, 115708 (2019). https://doi.org/10.1016/j.seppur.2019.115708

    Article  Google Scholar 

  19. Fagundes, F.M., Santos, N.B.C., Martins, A.L., Damasceno, J.J.R., Arouca, F.O.: Gravitational solid-liquid separation of water-based drilling fluids weighted with hematite through the gamma-ray attenuation technique. J. Pet. Sci. Eng. 180, 406–412 (2019). https://doi.org/10.1016/j.petrol.2019.05.054

    Article  Google Scholar 

  20. Pavlenko, I., Ivanov, V., Kuric, I., Gusak, O., Liaposhchenko, O.: Ensuring vibration reliability of turbopump units using artificial neural networks. In: Trojanowska, J., Ciszak, O., Machado, J., Pavlenko, I. (eds.) Advances in Manufacturing II, Vol. 1 - Solutions for Industry 4.0, Lecture Notes in Mechanical Engineering, pp. 165–175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18715-6_14

    Chapter  Google Scholar 

  21. Yang, L., Li, X., Li, W., Yan, X., Zhang, H.: Intensification of interfacial adsorption of dodecylamine onto quartz by ultrasonic method. Sep. Purif. Technol. 227, 115701 (2019). https://doi.org/10.1016/j.seppur.2019.115701

    Article  Google Scholar 

  22. Luo, X., Gong, H., Cao, J., Yin, H., Yan, Y., He, L.: Enhanced separation of water-in-oil emulsions using ultrasonic standing waves. Chem. Eng. Sci. 203, 285–292 (2019). https://doi.org/10.1016/j.ces.2019.04.002

    Article  Google Scholar 

  23. Liaposchenko, O., Pavlenko, I., Nastenko, O.: The model of crossed movement and gas-liquid flow interaction with captured liquid film in the inertial-filtering separation channels. Sep. Purif. Technol. 173, 240–243 (2017). https://doi.org/10.1016/j.seppur.2016.08.042

    Article  Google Scholar 

  24. Liaposhchenko, O., Pavlenko, I., Ivanov, V., Demianenko, M., Starynskyi, O., Kuric, I., Khukhryanskiy, O.: Improvement of parameters for the multi-functional oil-gas separator of “Heater-Treater” type. In: 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), pp. 66–71 (2019). https://doi.org/10.1109/IEA.2019.8715203

    Chapter  Google Scholar 

  25. Panchenko, А., Voloshinа, А., Boltyansky, О., Milaeva, I., Grechka, I., Khovanskyy, S., Svynarenko, M., Glibko, O., Maksimova, M., Paranyak, N.: Designing the flow-through parts of distribution systems for the PRG series planetary hydraulic motors. Eastern-Eur. J. Enterprise Technol. 3(1(93)), 67–77 (2018). https://doi.org/10.15587/1729-4061.2018.132504

    Article  Google Scholar 

  26. Syomin, D., Rogovyi, A.: Features of a working process and characteristics of irrotational centrifugal pumps. Proc. Eng. 39, 231–237 (2012). https://doi.org/10.1016/j.proeng.2012.07.029

    Article  Google Scholar 

  27. Pavlenko, I., Liaposhchenko, O., Sklabinskyi, V., Ivanov, V., Gusak, O.: Hydrodynamic features of gas-liquid flow movement in a separation device plane channel with an oscillating wall. Problemele Energeticii Regionale. 3(38), 62–70 (2018). https://doi.org/10.5281/zenodo.2222360

    Article  Google Scholar 

  28. Wang, Y., Guo, L.: Theoretical and experimental research on interfacial shear stress and interfacial friction factor of gas-liquid two-phase wavy stratified flow in horizontal pipe. Heat Mass Transf. 55(8), 2117–2135 (2019). https://doi.org/10.1007/s00231-019-02560-x

    Article  Google Scholar 

  29. Lee, H.M., Kwon, O.J.: Performance improvement of horizontal axis wind turbines by aerodynamic shape optimization including aeroelastic deformation. Renew. Energy. 147, 2128–2140 (2020). https://doi.org/10.1016/j.renene.2019.09.125

    Article  Google Scholar 

  30. Parmar, M., Haselbacher, A., Balachandar, S.: Generalized Basset–Boussinesq–Oseen equation for unsteady forces on a sphere in a compressible flow. Phys. Rev. Lett. 106, 084501 (2011). https://doi.org/10.1103/PhysRevLett.106.084501

    Article  Google Scholar 

  31. Daitche, A.: On the role of the history force for inertial particles in turbulence. J. Fluid Mech. 782, 567–593 (2015). https://doi.org/10.1017/jfm.2015.551

    Article  MathSciNet  MATH  Google Scholar 

  32. Kelbaliev, G.I., Ibragimov, Z.I., Kasimova, R.K.: Deposition of aerosol particles in vertical channels from an isotropic turbulent flow. J. Eng. Phys. Thermophys. 83(5), 908–916 (2010). https://doi.org/10.1007/s10891-010-0413-4

    Article  Google Scholar 

  33. Zamuraev, V.P., Kalinina, A.P.: Numerical and analytical simulation of the structure of a supersonic gas flow in a variable-section channel with power supply. J. Eng. Phys. Thermophys. 88(1), 214–223 (2015). https://doi.org/10.1007/s10891-015-1184-8

    Article  Google Scholar 

Download references

Acknowledgments

The results of the presented research were obtained at the Faculty of Technical Systems and Energy Efficient Technologies of Sumy State University, Sumy, Ukraine, within the research project “Development and Implementation of Energy Efficient Modular Separation Devices for Oil and Gas Purification Equipment” (State reg. No. 0117U003931) ordered by the Ministry of Education and Science of Ukraine (Scientific Advisor—DSc., Principal Researcher, Professor Oleksandr Liaposhchenko).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitalii Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pavlenko, I., Liaposhchenko, O., Sklabinskyi, V., Ivanov, V., Gusak, O. (2020). Ensuring the Reliability of Separation Equipment Based on Parameter Identification of the Operation Process. In: Knapcikova, L., Balog, M., Peraković, D., Periša, M. (eds) New Approaches in Management of Smart Manufacturing Systems. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-40176-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40176-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40175-7

  • Online ISBN: 978-3-030-40176-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics