Skip to main content

VANETs Routing Protocols Survey: Classifications, Optimization Methods and New Trends

  • Conference paper
  • First Online:
Distributed Computing for Emerging Smart Networks (DiCES-N 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1130))

Abstract

The specific characteristics of vehicular ad-hoc networks, such as high-speed nodes, frequent topology changes and predefined vehicle movement paths, make mobile ad-hoc networks routing protocols not convenient to disseminate data in the vehicular environment. In addition, the new vision towards Internet of Vehicles concept along with the advent of autonomous cars contribute to the proliferation of new innovative applications with different QoS requirements, rising new challenging issues. In this paper, we survey the different taxonomies for vehicular routing protocols, while exposing several optimization techniques used to enhance routing protocols. Moreover, in order to foster the deployment of robust Internet of Vehicles routing protocols at large scale, we give some directions for future research work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yousefi, S., Mousavi, M.S., Fathy, M.: Vehicular ad hoc networks (VANETs): challenges and perspectives. In: 2006 6th International Conference on ITS Telecommunications, pp. 761–766, June 2006

    Google Scholar 

  2. Sichitiu, M.L., Kihl, M.: Inter-vehicle communication systems: a survey. IEEE Commun. Surv. Tutor. 10(2), 88–105 (2008)

    Article  Google Scholar 

  3. Ang, L.M., Seng, K.P., Ijemaru, G.K., Zungeru, A.M.: Deployment of IoV for smart cities: applications, architecture, and challenges. IEEE Access 7, 6473–6492 (2019)

    Article  Google Scholar 

  4. Lee, K.C., Lee, U., Gerla, M.: Survey of routing protocols in vehicular ad hoc networks (2010)

    Google Scholar 

  5. Li, F., Wang, Y.: Routing in vehicular ad hoc networks: a survey. IEEE Veh. Technol. Mag. 2(2), 12–22 (2007)

    Article  Google Scholar 

  6. Kumar, R., Dave, M.: A comparative study of various routing protocols in VANET. Int. J. Comput. Sci. Issues 8, 08 (2011)

    Google Scholar 

  7. Chen, W., Guha, R.K., Kwon, T.J., Lee, J., Hsu, I.Y.: A survey and challenges in routing and data dissemination in vehicular ad-hoc networks, pp. 328–333, September 2008

    Google Scholar 

  8. Dua, A., Kumar, N., Bawa, S.: A systematic review on routing protocols for vehicular ad hoc networks. Veh. Commun. 1(1), 33–52 (2014)

    Google Scholar 

  9. Cheng, J., Cheng, J., Zhou, M., Liu, F., Gao, S., Liu, C.: Routing in Internet of Vehicles: a review. IEEE Trans. Intell. Transp. Syst. 16(5), 2339–2352 (2015)

    Article  Google Scholar 

  10. Alouache, L., Nguyen, N., Aliouat, M., Chelouah, R.: Survey on IoV routing protocols: security and network architecture. Int. J. Commun. Syst. 32, e3849 (2019)

    Article  Google Scholar 

  11. Awang, A., Husain, K., Kamel, N., Aïssa, S.: Routing in vehicular ad-hoc networks: a survey on single- and cross-layer design techniques, and perspectives. IEEE Access 5, 9497–9517 (2017)

    Article  Google Scholar 

  12. Lin, Y.-W., Chen, Y.-S., Lee, S.-L.: Routing protocols in vehicular ad hoc networks: a survey and future perspectives. J. Inf. Sci. Eng. 26, 05 (2010)

    Google Scholar 

  13. ETSI: Intelligent transport systems (ITS), vehicular communications; geonetworking, part 1: Requirements. EN 302 636–1 V1.2.1, April 2014

    Google Scholar 

  14. Shah, S.A.A., Ahmed, E., Xia, F., Karim, A., Shiraz, M., Noor, R.M.: Adaptive beaconing approaches for vehicular ad hoc networks: a survey. IEEE Syst. J. 12(2), 1263–1277 (2018)

    Article  Google Scholar 

  15. Jagadeesh, K., Laxmi, G., Sathya, S., Battula, B.: A survey on routing protocols and its issues in VANET. Int. J. Comput. Appl. 28, 38–44 (2011)

    Google Scholar 

  16. Ksouri, C., Jemili, I., Mosbah, M., Belghith, A.: Data gathering for Internet of Vehicles safety. In: 2018 14th International Wireless Communications Mobile Computing Conference (IWCMC), pp. 904–909, June 2018

    Google Scholar 

  17. Zekri, A., Jia, W.: Heterogeneous vehicular communications: a comprehensive study. Ad Hoc Netw. 75, 52–79 (2018)

    Article  Google Scholar 

  18. Brummer, A., German, R., Djanatliev, A.: On the necessity of three-dimensional considerations in vehicular network simulation. In: 2018 14th Annual Conference on Wireless On-demand Network Systems and Services (WONS), February 2018

    Google Scholar 

  19. Katsaros, K.: A survey of routing protocols for vehicular ad-hoc networks (VANETs) (2011)

    Google Scholar 

  20. Kayhan, G., Marwan, M., Jaime, L., Rulnizam, K., Bakar, A., Zaitul, Z.: Routing protocols in vehicular ad hoc networks: survey and research challenges. Netw. Protoc. Algorithms 5, 39 (2013)

    Google Scholar 

  21. Da Cunha, F.D., Boukerche, A., Villas, L., Viana, A.C., Loureiro, A.A.: Data communication in VANETs: a survey, challenges and applications. Ad Hoc Netw. 44, 90–103 (2016)

    Article  Google Scholar 

  22. Willke, T.L., Tientrakool, P., Maxemchuk, N.F.: A survey of inter-vehicle communication protocols and their applications. IEEE Commun. Surv. Tutor. 11(2), 3–20 (2009)

    Article  Google Scholar 

  23. Mellouk, A., Bitam, S., Zeadally, S.: Bio-inspired routing algorithms survey for vehicular ad hoc networks. IEEE Commun. Surv. Tutor. 17, 843–867 (2014)

    Google Scholar 

  24. Dressler, F., Akan, O.B.: A survey on bio-inspired networking. Comput. Netw. 54(6), 881–900 (2010)

    Article  MATH  Google Scholar 

  25. Hajlaoui, R., Guyennet, H., Moulahi, T.: A survey on heuristic-based routing methods in vehicular ad-hoc network: technical challenges and future trends. IEEE Sens. J. 16(17), 6782–6792 (2016)

    Article  Google Scholar 

  26. Jafer, M., Khan, M.A., ur Rehman, S., Zia, T.A.: Broadcasting under highway environment in VANETs using genetic algorithm. In: 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), pp. 1–5, June 2017

    Google Scholar 

  27. Jafer, M., Khan, M.A., Ur Rehman, S., Zia, T.A.: Evolutionary algorithm based optimized relay vehicle selection in vehicular communication. IEEE Access 6, 71524–71539 (2018)

    Article  Google Scholar 

  28. https://www.lebigdata.fr/swarm-intelligence-distribuee-definition

  29. Marco, D., Vittorio, M., Alberto, C.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst., Man Cybern. 26, 29–41 (1996)

    Article  Google Scholar 

  30. Goudarzi, F., Asgari, H., Al-Raweshidy, H.S.: Traffic-aware VANET routing for city environments–a protocol based on ant colony optimization. IEEE Syst. J. 13(1), 571–581 (2019)

    Article  Google Scholar 

  31. Gawas, M.A., Gawas, M.M.: A novel selective cross layer based routing scheme using ACO method for vehicular networks. J. Netw. Comput. Appl. 143, 34–46 (2019)

    Article  Google Scholar 

  32. Kennedy, J., Eberhart, R.: Particle swarm optimization (PSO). In: Proceedings of IEEE International Conference on Neural Networks, Perth, Australia (1995)

    Google Scholar 

  33. Saritha, V., Krishna, P.V., Misra, S., Obaidat, M.S.: Learning automata based optimized multipath routing using leapfrog algorithm for VANETs. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5, May 2017

    Google Scholar 

  34. Gupta, M., Sabharwal, N., Singla, P., Singh, J., Rodrigues, J.J.P.C.: PSARV: particle swarm angular routing in vehicular ad hoc networks. In: Woungang, I., Dhurandher, S.K. (eds.) WIDECOM 2018. LNDECT, vol. 27, pp. 115–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11437-4_9

    Chapter  Google Scholar 

  35. Koç, E., Otri, S., Rahim, S., Pham, D.T., Ghanbarzadeh, A., Zaidi, M.: The bees algorithm–a novel tool for complex optimisation problems. In: Intelligent Production Machines and Systems, pp. 454–459. Elsevier (2006)

    Google Scholar 

  36. Zhang, X., Zhang, X.: A binary artificial bee colony algorithm for constructing spanning trees in vehicular ad hoc networks. Ad Hoc Netw. 58, 198–204 (2017)

    Article  Google Scholar 

  37. Kaur, S., Aseri, T.C., Rani, S.: QoS-aware routing in vehicular ad hoc networks using ant colony optimization and bee colony optimization. In: Krishna, C.R., Dutta, M., Kumar, R. (eds.) Proceedings of 2nd International Conference on Communication, Computing and Networking. LNNS, vol. 46, pp. 251–260. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1217-5_25

    Chapter  Google Scholar 

  38. Chu, S.-C., Tsai, P., Pan, J.-S.: Cat swarm optimization. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 854–858. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-36668-3_94

    Chapter  Google Scholar 

  39. Kasana, R., Kumar, S.: A geographic routing algorithm based on cat swarm optimization for vehicular ad-hoc networks. In: 2017 4th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 86–90, February 2017

    Google Scholar 

  40. Swagatam, D., Arijit, B., Sambarta, D., Ajith, A.: Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. In: Abraham, A., Hassanien, A.E., Siarry, P., Engelbrecht, A. (eds.) Foundations of Computational Intelligence Volume 3, vol. 203, pp. 23–55. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01085-9_2

    Chapter  MATH  Google Scholar 

  41. Mehta, K., Bajaj, P.R., Malik, L.G.: Fuzzy bacterial foraging optimization zone based routing (fbfozbr) protocol for VANET. In: 2016 International Conference on ICT in Business Industry Government (ICTBIG), pp. 1–10, November 2016

    Google Scholar 

  42. Shattal, M.A., Wisniewska, A., Khan, B., Al-Fuqaha, A., Dombrowski, K.: From channel selection to strategy selection: enhancing vanets using socially-inspired foraging and deference strategies. IEEE Trans. Veh. Technol. 67(9), 8919–8933 (2018)

    Article  Google Scholar 

  43. Zheng, Y.-J.: Water wave optimization: a new nature-inspired metaheuristic. Comput. Oper. Res. 55, 1–11 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Craik, A.D.D.: The origins of water wave theory. Annu. Rev. Fluid Mech. 36, 1–28 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wagh, M.B., Gomathi, N.: Water wave optimization-based routing protocol for vehicular adhoc networks. Int. J. Model. Simul. Sci. Comput. 9(05), 1850047 (2018)

    Article  Google Scholar 

  46. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  47. Valayapalayam Kittusamy, S.R., Elhoseny, M., Kathiresan, S.: An enhanced whale optimization algorithm for vehicular communication networks. Int. J. Commun. Syst. e3953 (2019)

    Google Scholar 

  48. Zadeh, L.A.: Fuzzy logic. Computer 21(4), 83–93 (1988)

    Article  Google Scholar 

  49. Alzamzami, O., Mahgoub, I.: Fuzzy logic-based geographic routing for urban vehicular networks using link quality and achievable throughput estimations. IEEE Trans. Intell. Transp. Syst. 20(6), 2289–2300 (2019)

    Article  Google Scholar 

  50. Fahad, T.O., Ali, A.A.: Compressed fuzzy logic based multi-criteria AODV routing in VANET environment. Int. J. Electr. Comput. Eng. (IJECE) 9(1), 397–401 (2019)

    Article  Google Scholar 

  51. Michie, D., Spiegelhalter, D.J., Taylor, C.C., et al.: Machine learning. Neural Stat. Classification 13, 19–22 (1994)

    Google Scholar 

  52. Sutton, R.S., Barto, A.G., et al.: Introduction to Reinforcement Learning, vol. 2. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  53. Mammeri, Z.: Reinforcement learning based routing in networks: review and classification of approaches. IEEE Access 7, 55916–55950 (2019)

    Article  Google Scholar 

  54. Ji, X., et al.: Keep forwarding path freshest in VANET via applying reinforcement learning. In: 2019 IEEE First International Workshop on Network Meets Intelligent Computations (NMIC), pp. 13–18, July 2019

    Google Scholar 

  55. Jinqiao, W., Fang, M., Li, X.: Reinforcement learning based mobility adaptive routing for vehicular ad-hoc networks. Wirel. Pers. Commun. 101(4), 2143–2171 (2018)

    Article  Google Scholar 

  56. Sun, Y., Lin, Y., Tang, Y.: A reinforcement learning-based routing protocol in VANETs. In: Liang, Q., Mu, J., Jia, M., Wang, W., Feng, X., Zhang, B. (eds.) CSPS 2017. LNEE, vol. 463, pp. 2493–2500. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-6571-2_303

    Chapter  Google Scholar 

  57. Hoang, D.T., Lu, X., Niyato, D., Wang, P., Kim, D.I., Han, Z.: Applications of repeated games in wireless networks: a survey. IEEE Commun. Surv. Tutor. 17(4), 2102–2135 (2015)

    Article  Google Scholar 

  58. Khan, A.A., Abolhasan, M., Ni, W.: An evolutionary game theoretic approach for stable and optimized clustering in VANETs. IEEE Trans. Veh. Technol. 67(5), 4501–4513 (2018)

    Article  Google Scholar 

  59. Wellington, L.J., Rosário, D., Cerqueira, E., Villas, L., Gerla, M.: A game theory approach for platoon-based driving for multimedia transmission in VANETs. Wirel. Commun. Mob. Comput. 2018, 11 p. (2018)

    Google Scholar 

  60. Nunes, B.A.A., Mendonca, M., Nguyen, X., Obraczka, K., Turletti, T.: A survey of software-defined networking: past, present, and future of programmable networks. IEEE Commun. Surv. Tutor. 16(3), 1617–1634 (2014)

    Article  Google Scholar 

  61. Kreutz, D., Ramos, F.M.V., Veríssimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)

    Article  Google Scholar 

  62. Jaballah, W.B., Conti, M., Lal, C.: A survey on software-defined VANETs: benefits, challenges, and future directions, April 2019

    Google Scholar 

  63. Ji, X., Yu, H., Fan, G., Fu, W.: SDGR: an SDN-based geographic routing protocol for VANET. In: 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 276–281, December 2016

    Google Scholar 

  64. Rayeni, M.S., Hafid, A.: Routing in heterogeneous vehicular networks using an adapted software defined networking approach. In: 2018 Fifth International Conference on Software Defined Systems (SDS), pp. 25–31, April 2018

    Google Scholar 

  65. Kazmi, A., Khan, M.A., Akram, M.U.: DeVANET: Decentralized software-defined VANET architecture. In: 2016 IEEE International Conference on Cloud Engineering Workshop (IC2EW), pp. 42–47, April 2016

    Google Scholar 

  66. Alioua, A., Senouci, S.-M., Moussaoui, S.: dSDiVN: a distributed software-defined networking architecture for infrastructure-less vehicular networks. In: Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2017. CCIS, vol. 717, pp. 56–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60447-3_5

    Chapter  Google Scholar 

  67. Hayes, B.: Cloud computing. Commun. ACM 51(7), 9–11 (2008)

    Article  Google Scholar 

  68. Bitam, S., Mellouk, A., Zeadally, S.: VANET-cloud: a generic cloud computing model for vehicular ad hoc networks. IEEE Wirel. Commun. 22(1), 96–102 (2015)

    Article  Google Scholar 

  69. Bhoi, S.K., Khilar, P.M.: RVCloud: a routing protocol for vehicular ad hoc network in city environment using cloud computing. Wirel. Netw. 22(4), 96–102 (2016)

    Article  Google Scholar 

  70. Olariu, S., Khalil, I., Abuelela, M.: Taking VANET to the clouds. Int. J. Pervasive Comput. Commun. 7(1), 7–21 (2011)

    Article  Google Scholar 

  71. Khalil, I., Mousannif, H., Olariu, S.: Cooperation as a service in VANET: implementation and simulation results. Mob. Inf. Syst. 8(2), 153–172 (2012)

    Google Scholar 

  72. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the Internet of Things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13–16. ACM (2012)

    Google Scholar 

  73. Brennand, C.A.R.L., Boukerche, A., Meneguette, R., Villas, L.A.: A novel urban traffic management mechanism based on fog. In: 2017 IEEE Symposium on Computers and Communications (ISCC), pp. 377–382, July 2017

    Google Scholar 

  74. Hou, X., Li, Y., Chen, M., Di, W., Jin, D., Chen, S.: Vehicular fog computing: a viewpoint of vehicles as the infrastructures. IEEE Trans. Veh. Technol. 65(6), 3860–3873 (2016)

    Article  Google Scholar 

  75. Lu, T., Chang, S., Li, W.: Fog computing enabling geographic routing for urban area vehicular network. Peer-to-Peer Netw. Appl. 11(4), 749–755 (2018)

    Article  Google Scholar 

  76. Wu, C., Yoshinaga, T., Ji, Y., Zhang, Y.: Computational intelligence inspired data delivery for vehicle-to-roadside communications. IEEE Trans. Veh. Technol. 67(12), 12038–12048 (2018)

    Article  Google Scholar 

  77. Sun, G., Zhang, Y., Yu, H., Du, X., Guizani, M.: Intersection fog-based distributed routing for V2V communication in urban vehicular ad hoc networks. IEEE Trans. Intell. Transp. Syst. 1–14 (2019)

    Google Scholar 

  78. Tang, Y., Cheng, N., Wu, W., Wang, M., Dai, Y., Shen, X.: Delay-minimization routing for heterogeneous VANETs with machine learning based mobility prediction. IEEE Trans. Veh. Technol. 68(4), 3967–3979 (2019)

    Article  Google Scholar 

  79. Oubbati, O.S., Chaib, N., Lakas, A. and Bitam, S.: On-demand routing for urban VANETs using cooperating UAVs. In: 2018 International Conference on Smart Communications in Network Technologies (SaCoNeT), pp. 108–113, October 2018

    Google Scholar 

Download references

Acknowledgment

This work was financially supported by the “PHC Utique” program of the French Ministry of Foreign Affairs and Ministry of higher education and research and the Tunisian Ministry of higher education and scientific research in the CMCU project number 17G1417.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chahrazed Ksouri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ksouri, C., Jemili, I., Mosbah, M., Belghith, A. (2020). VANETs Routing Protocols Survey: Classifications, Optimization Methods and New Trends. In: Jemili, I., Mosbah, M. (eds) Distributed Computing for Emerging Smart Networks. DiCES-N 2019. Communications in Computer and Information Science, vol 1130. Springer, Cham. https://doi.org/10.1007/978-3-030-40131-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40131-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40130-6

  • Online ISBN: 978-3-030-40131-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics