Skip to main content

Quality and Price Competition in Spatial Markets

  • Chapter
  • First Online:
Spatial Economics Volume I

Abstract

We analyse the effects of competition on quality provision in spatial markets where providers compete on both price and quality and where travel distance is a key factor for consumers’ choice of provider. Examples of such markets include health care, long-term care, child care and education. While policy makers in many countries have introduced measures to stimulate consumer choice, and thus competition, in such markets, the scientific literature has not produced a consensual view about the resulting effects on quality provision. In this chapter we present a unified theoretical framework that synthesises a number of different insights from the existing theoretical literature. We show that the relationship between competition and quality provision is complex and highly ambiguous and that it is likely to depend on several factors related to both the demand and supply side of the market, such as providers’ degree of motivation or risk aversion, the cost relationship between quality and output and the presence of income effects in demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See, e.g., Brekke et al. (2018) and Cellini et al. (2018) for a wide range of examples.

  2. 2.

    There are many empirical studies confirming that travelling distance and quality are key predictors for the choice of hospitals (Gutacker et al. 2016; Kessler and McClellan 2000; Tay 2003), nursing homes (Grabowski et al. 2013; Rahman and Foster 2015; Shugarman and Brown 2006; Zwanziger et al. 2002) and schools (Chumacero et al. 2011; Gibbons et al. 2008; Hastings et al. 2005).

  3. 3.

    See, e.g., Ellis and McGuire (1986), Chalkley and Malcomson (1998), Eggleston (2005), Choné and Ma (2011), Kaarboe and Siciliani (2011), Brekke et al. (2011, 2012).

  4. 4.

    See Brekke et al. (2018) for a wide range of examples.

  5. 5.

    Outside the spatial competition literature, there is also a small literature studying the relationship between competition and quality provision using a representative consumer framework and typically also finding this relationship to be ambiguous. Examples of this literature include Banker et al. (1998), Sutton (1996) and Symeonidis (2000).

  6. 6.

    For the US hospital market, a positive effect of competition on quality is found by Gowrisankaran and Town (2003) and Escarce et al. (2006), while a negative effect is found by Mukamel et al. (2002). Similarly, regarding the effect of competition on quality in nursing home markets, Zhao (2016) finds a positive effect in the US, whereas Grabowski (2004) and Forder and Allan (2014) find negative effects in the US and in the UK, respectively.

  7. 7.

    For simplicity, the marginal utility of quality and the marginal disutility of travelling are both assumed to be constant. However, all our main results remain qualitatively unchanged under the alternative assumptions of decreasing marginal utility of quality and increasing marginal cost of travelling.

  8. 8.

    Our specific formulation of the utility function in (12.1), where the marginal utility of income is affected by a price change but not by a change in travelling costs, implies that we should interpret these costs as non-monetary costs (or, more generally, as the disutility of travelling). See Brekke et al. (2010) for a more general case in which travelling costs are partly monetary and partly non-monetary.

  9. 9.

    The second-order conditions are provided in Appendix 1.

  10. 10.

    Conditions for stability and uniqueness of this equilibrium are given in Appendix 1.

  11. 11.

    Keeping the quality level constant, we can derive the effect of increased competition on the equilibrium price by total differentiation of (12.7), yielding

    $$\displaystyle \begin{aligned} \left\vert \frac{\partial p^{\ast }}{\partial \tau }\right\vert {}_{q^{\ast } \mbox{ constant}}=-\frac{\partial F_{p}/\partial \tau }{\partial F_{p}/\partial p^{\ast }}>0. \end{aligned}$$

    The presence of income effects in demand does not affect the numerator, but adds another negative term to the denominator, making it larger in absolute value (see Appendix 1). In turn, this reduces the magnitude of the price increase (for a given quality level).

  12. 12.

    The sign of ∂q ∂τ is given by the sign of \( \left ( \partial F_{q}/\partial p^{\ast }\right ) \left ( \partial F_{p}/\partial \tau \right ) -\left ( \partial F_{p}/\partial p^{\ast }\right ) \left ( \partial F_{q}/\partial \tau \right ) \). Provider risk aversion only affects ∂F q∂p  > 0, adding a positive term to this factor and thereby making it larger (see Appendix 1). Thus, the presence of provider risk aversion reinforces the strategic quality response to a change in prices.

  13. 13.

    See Cellini et al. (2018) for formal proofs of ∂q CL∂τ < 0 and q CL < q OL.

  14. 14.

    The second-order conditions are almost identical to the ones in the duopoly game and therefore not reported.

  15. 15.

    Conditions for stability and uniqueness of this equilibrium are given in Appendix 3.

  16. 16.

    In this model there are no incentives for plant closure after a merger unless there are sufficiently large plant-fixed costs.

  17. 17.

    All results in this section are derived by straightforward algebra and the formal proofs are therefore omitted. We refer the interested reader to Brekke et al. (2017) for a more detailed analysis.

  18. 18.

    See Brekke et al. (2017) for a more precise and comprehensive analysis.

  19. 19.

    To save notation, we henceforth drop the time indicator t.

  20. 20.

    Notice that the condition is satisfied if τ and/or θ are sufficiently large relative to β and is therefore qualitatively similar to the equilibrium existence condition for the open-loop solution.

References

  • Banker, R. D., Khosla, I., & Sinha, K. K. (1998). Quality and competition. Management Science, 44, 1179–1192.

    Article  Google Scholar 

  • Brekke, K. R., Siciliani, L., & Straume, O. R. (2010). Price and quality in spatial competition. Regional Science and Urban Economics, 40, 471–480.

    Article  Google Scholar 

  • Brekke, K. R., Siciliani, L., & Straume, O. R. (2011). Hospital competition and quality with regulated prices. Scandinavian Journal of Economics, 113, 444–469.

    Article  Google Scholar 

  • Brekke, K. R., Siciliani, L., & Straume, O. R. (2012). Quality competition with profit constraints. Journal of Economic Behaviour & Organization, 84, 642–659.

    Article  Google Scholar 

  • Brekke, K. R., Siciliani, L., & Straume, O. R. (2017). Horizontal mergers and product quality. Canadian Journal of Economics, 50, 1063–1103.

    Article  Google Scholar 

  • Brekke, K. R., Siciliani, L., & Straume, O. R. (2018). Can competition reduce quality? Journal of Institutional and Theoretical Economics, 174, 421–447.

    Article  Google Scholar 

  • Cellini, R., Siciliani, L., & Straume, O. R. (2018). A dynamic model of quality competition with endogenous prices. Journal of Economic Dynamics & Control, 94, 190–206.

    Article  Google Scholar 

  • Chalkley, M., & Malcomson, J. M. (1998). Contracting for health services when patient demand does not reflect quality. Journal of Health Economics, 17, 1–19.

    Article  Google Scholar 

  • Choné, P., & Ma, C. A. (2011). Optimal health care contracts under physician agency. Annales d’Economie et de Statistique, 101/102, 229–256.

    Google Scholar 

  • Chumacero, R. A., Gomez, D., & Paredes, R. (2011). I would walk 500 miles (if it paid): Vouchers and school choice in Chile. Economics Educaction Review, 30, 1103–1114.

    Article  Google Scholar 

  • Economides, N. (1993). Quality variations in the circular model of variety-differentiated products. Regional Science and Urban Economics, 23, 235–257.

    Article  Google Scholar 

  • Eggleston, K. (2005). Multitasking and mixed systems for provider payment. Journal of Health Economics, 24, 211–223.

    Article  Google Scholar 

  • Ellis, R. P., & McGuire, T. (1986). Provider behavior under prospective reimbursement: Cost sharing and supply. Journal of Health Economics, 5, 129–151.

    Article  Google Scholar 

  • Escarce, J. J., Jain, A. K., & Rogowski, J. (2006). Hospital competition, managed care, and mortality after hospitalization for medical conditions: Evidence from three states. Medical Care Research and Review, 63, 112S–140S.

    Article  Google Scholar 

  • Forder, J., & Allan, S. (2014). The impact of competition on quality and prices in the English care homes market. Journal of Health Economics, 34, 73–83.

    Article  Google Scholar 

  • Gibbons, S., Machin, S., & Silva, O. (2008). Choice, competition, and pupil achievement. Journal of the European Economic Association, 6, 912–947.

    Article  Google Scholar 

  • Gowrisankaran, G., & Town, R. (2003). Competition, payers, and hospital quality. Health Services Research, 38, 1403–1422.

    Article  Google Scholar 

  • Grabowski, D. C. (2004). A longitudinal study of Medicaid payment, private-pay price and nursing home quality. International Journal Health Care Finance and Economics, 4, 5–26.

    Article  Google Scholar 

  • Grabowski, D. C., Feng, Z., Hirth, R., Rahman, M., & Mor, V. (2013). Effect of nursing home ownership on the quality of post-acute care: An instrumental variablesapproach. Journal of Health Economics, 32, 12–21.

    Article  Google Scholar 

  • Gravelle, H. (1999). Capitation contracts: access and quality. Journal of Health Economics, 18, 315–340.

    Article  Google Scholar 

  • Gutacker, N., Siciliani, L., Moscelli, G., & Gravelle, H. (2016). Choice of hospital: Which type of quality matters? Journal of Health Economics, 50, 230–246.

    Article  Google Scholar 

  • Hastings, J., Kane, T., & Staiger, D. O. (2005). Parental Preferences and School Competition: Evidence from a Public School Choice Program, National Bureau of Economic Research working paper #11805, November.

    Google Scholar 

  • Kaarboe, O., & Siciliani, L. (2011). Quality, multitasking and pay for performance. Health Economics, 2, 225–238.

    Article  Google Scholar 

  • Kessler, D., & McClellan, M. (2000). Is hospital competition socially wasteful? Quarterly Journal of Economics, 115, 577–615.

    Article  Google Scholar 

  • Léonard, D., & van Long, N. (1992). Optimal Control Theory and Static Optimization in Economics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Ma, C. A., & Burgess, J. F. (1993). Quality competition, welfare and regulation. Journal of Economics, 58, 153–173.

    Article  Google Scholar 

  • Mukamel, D., Zwanziger, J. A., & Bamezai, A. (2002). Hospital competition, resource allocation and quality of care. BMC Health Services Research, 2, 10–18.

    Article  Google Scholar 

  • Rahman, M., & Foster, A. D. (2015). Racial segregation and quality of care disparity in US nursing homes. Journal of Health Economics, 39, 1–16.

    Article  Google Scholar 

  • Shugarman, L. R., & Brown, J. A. (2006). Nursing Home Selection: How Do Consumers Choose? Volume I: Findings from Focus Groups of Consumers and Information Intermediaries. Washington, DC. Prepared for Office of Disability, Aging and Long-Term Care Policy, Office of the Assistant Secretary for Planning and Evaluation, U.S. Department of Health and Human Services, Contract #HHS-100-03-0023.

    Google Scholar 

  • Sutton, J. (1996). Technology and market structure. European Economic Review, 40, 511–530.

    Article  Google Scholar 

  • Symeonidis, G. (2000). Price and nonprice competition with endogenous market structure. Journal of Economics & Management Strategy, 9, 53–83.

    Article  Google Scholar 

  • Tay, A. (2003). Assessing competition in hospital care markets: The importance of accounting for quality differentiation. RAND Journal of Economics, 34, 786–814.

    Article  Google Scholar 

  • Zhao, X. (2016). Competition, information, and quality: Evidence from nursing homes. Journal of Health Economics, 49, 136–152.

    Article  Google Scholar 

  • Zwanziger, J., Mukamel, D.B., & Indridason, I. (2002). Use of resident-origin data to define nursing home market boundaries. Inquiry, 39, 56–66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odd Rune Straume .

Editor information

Editors and Affiliations

Appendices

Appendix 1

In this appendix we provide existence conditions for the Nash equilibrium in the static duopoly game and underlying details of the comparative statics results.

The second-order conditions for Provider i’s optimal choices of price and quality are given by

$$\displaystyle \begin{aligned} \frac{\partial ^{2}\Omega _{i}}{\partial p_{i}^{2}}&=v^{\prime }\left( \pi _{i}\right) \frac{1}{2\tau }\left[ \left( p_{i}-\frac{\partial c\left( D_{i},q_{i}\right) }{\partial D_{i}}\right) u^{\prime \prime }\left( y\left( p_{i}\right) \right) \right.\\&\quad \left.-\left( 2+\frac{\partial ^{2}c\left( D_{i},q_{i}\right) }{\partial D_{i}^{2}}\frac{u^{\prime }\left( y\left( p_{i}\right) \right) }{ 2\tau }\right) u^{\prime }\left( y\left( p_{i}\right) \right) \right] <0 \end{aligned} $$
(12.39)

and

$$\displaystyle \begin{aligned} \frac{\partial ^{2}\Omega _{i}}{\partial q_{i}^{2}} &=v^{\prime \prime }\left( \pi _{i}\right) \left[ \left( p_{i}-\frac{\partial c\left( D_{i},q_{i}\right) }{\partial D_{i}}\right) \frac{\beta }{2\tau }-\frac{ \partial c\left( D_{i},q_{i}\right) }{\partial q_{i}}\right] ^{2}\\ &\quad -v^{\prime }\left( \pi _{i}\right) \left[ \left( \frac{\beta }{2\tau } \frac{\partial ^{2}c\left( D_{i},q_{i}\right) }{\partial D_{i}^{2}}+\frac{ \partial ^{2}c\left( D_{i},q_{i}\right) }{\partial D_{i}\partial q_{i}} \right) +\frac{\partial ^{2}c\left( D_{i},q_{i}\right) }{\partial q_{i}^{2}} \right]\\ &\quad +b^{\prime \prime }\left( q_{i}\right)< 0. \end{aligned} $$
(12.40)

Since the first-order condition for the optimal price implies \( p_{i}>\partial c\left ( D_{i},q_{i}\right ) /\partial D_{i}\), then (12.39) always holds, while (12.40) holds if output and quality are cost substitutes (i.e., \( \partial ^{2}c\left ( D_{i},q_{i}\right ) /\partial D_{i}\partial q_{i}>0\)) or, in case of cost complementarities, if the magnitude of \(\left \vert \partial ^{2}c\left ( D_{i},q_{i}\right ) /\partial D_{i}\partial q_{i}\right \vert \) is not too large.

From (12.7)–(12.8), which implicitly define the symmetric Nash equilibrium, we derive

$$\displaystyle \begin{aligned} \frac{\partial F_{p}}{\partial p^{\ast }}=-\frac{u^{\prime }\left( y\left( p^{\ast }\right) \right) }{2\tau }+\left( p^{\ast }-\frac{\partial c\left( \frac{1}{2},q^{\ast }\right) }{\partial D_{i}}\right) \frac{u^{\prime \prime }\left( y\left( p^{\ast }\right) \right) }{2\tau }<0, \end{aligned} $$
(12.41)
$$\displaystyle \begin{aligned} \frac{\partial F_{q}}{\partial q^{\ast }}&=-v^{\prime \prime }\left( \pi \left( p^{\ast },q^{\ast }\right) \right) \frac{\partial ^{2}c\left( \frac{1 }{2},q^{\ast }\right) }{\partial q_{i}^{2}}\\&\quad -v^{\prime }\left( \pi \left( p^{\ast },q^{\ast }\right) \right) \left[ \frac{\partial ^{2}c\left( \frac{1 }{2},q^{\ast }\right) }{\partial D_{i}\partial q_{i}}\frac{\beta }{2\tau }+ \frac{\partial ^{2}c\left( \frac{1}{2},q^{\ast }\right) }{\partial q_{i}^{2}} \right] +b^{\prime \prime }\left( q^{\ast }\right) <0, \end{aligned} $$
(12.42)
$$\displaystyle \begin{aligned} \frac{\partial F_{p}}{\partial q^{\ast }}=\frac{\partial ^{2}c\left( \frac{1 }{2},q^{\ast }\right) }{\partial D_{i}\partial q_{i}}\frac{u^{\prime }\left( y\left( p^{\ast }\right) \right) }{2\tau }>\left( <\right) 0\mbox{ if }\frac{ \partial ^{2}c\left( \frac{1}{2},q^{\ast }\right) }{\partial D_{i}\partial q_{i}}>\left( <\right) 0, \end{aligned} $$
(12.43)
$$\displaystyle \begin{aligned} \frac{\partial F_{q}}{\partial p^{\ast }}&=\frac{v^{\prime \prime }\left( \pi \left( p^{\ast },q^{\ast }\right) \right) }{2}\left[ \left( p^{\ast }-\frac{ \partial c\left( \frac{1}{2},q^{\ast }\right) }{\partial D_{i}}\right) \frac{ \beta }{2\tau }-\frac{\partial c\left( \frac{1}{2},q^{\ast }\right) }{ \partial q_{i}}\right] \\&\quad +v^{\prime }\left( \pi \left( p^{\ast },q^{\ast }\right) \right) \frac{\beta }{2\tau }>0, \end{aligned} $$
(12.44)
$$\displaystyle \begin{aligned} \frac{\partial F_{p}}{\partial \tau }=\left( p^{\ast }-\frac{\partial c\left( \frac{1}{2},q^{\ast }\right) }{\partial D_{i}}\right) \frac{ u^{\prime }\left( y\left( p^{\ast }\right) \right) }{2\tau ^{2}}>0, \end{aligned} $$
(12.45)
$$\displaystyle \begin{aligned} \frac{\partial F_{q}}{\partial \tau }=-v^{\prime }\left( \pi \left( p^{\ast },q^{\ast }\right) \right) \left( p^{\ast }-\frac{\partial c\left( \frac{1}{2 },q^{\ast }\right) }{\partial D_{i}}\right) \frac{\beta }{2\tau ^{2}}<0. \end{aligned} $$
(12.46)

Existence and stability of the Nash equilibrium require that ∂F p∂p  < 0, ∂F q∂q  < 0 and \( \left ( \partial F_{p}/\partial p^{\ast }\right ) \left ( \partial F_{q}/\partial q^{\ast }\right ) -\left ( \partial F_{q}/\partial p^{\ast }\right ) \left ( \partial F_{p}/\partial q^{\ast }\right ) > 0\). Using (12.41)–(12.44), the latter condition is equivalent to the condition

$$\displaystyle \begin{aligned} &4\tau \left( \begin{array}{c} u^{\prime }\left( y\left( p^{\ast }\right) \right) \\ - u^{\prime \prime }\left( y\left( p^{\ast }\right) \right) \left( p^{\ast }-\frac{\partial c\left( \frac{1}{2},q^{\ast }\right) }{ \partial D_{i}}\right) \end{array} \right)\\ &\times\left( \begin{array}{c} \frac{\partial ^{2}c\left( \frac{1}{2},q^{\ast }\right) }{\partial q_{i}^{2}} \left( v^{\prime }\left( \pi \left( p^{\ast },q^{\ast }\right) \right) +v^{\prime \prime }\left( \pi \left( p^{\ast },q^{\ast }\right) \right) \right) \\ -b^{\prime \prime }\left( q^{\ast }\right) \end{array} \right)\\ &+\frac{\partial ^{2}c\left( \frac{1}{2},q^{\ast }\right) }{\partial D_{i}\partial q_{i}}\left( \begin{array}{c} 2\tau u^{\prime }\left( y\left( p^{\ast }\right) \right) v^{\prime \prime }\left( \pi \left( p^{\ast },q^{\ast }\right) \right) \frac{\partial c\left( \frac{1}{2},q^{\ast }\right) }{\partial q_{i}} \\ -\beta \left[ \begin{array}{c} u^{\prime }\left( y\left( p^{\ast }\right) \right) v^{\prime \prime }\left( \pi \left( p^{\ast },q^{\ast }\right) \right) \\ +2 u^{\prime \prime }\left( y\left( p^{\ast }\right) \right) v^{\prime }\left( \pi \left( p^{\ast },q^{\ast }\right) \right) \end{array} \right] \left( p^{\ast }-\frac{\partial c\left( \frac{1}{2},q^{\ast }\right) }{\partial D_{i}}\right) \end{array} \right) \\ &\quad >0. \end{aligned} $$
(12.47)

If output and quality are cost substitutes, this condition is satisfied if the degree of provider risk-aversion (measured by \(-v^{\prime \prime }\left ( \pi \right ) /v^{\prime }\left ( \pi \right ) \)) is not too large. In case of cost complementarity, we need to impose the additional condition that the magnitude of \(\left \vert \partial ^{2}c\left ( D_{i},q_{i}\right ) /\partial D_{i}\partial q_{i}\right \vert \) is not too large.

Applying Cramer’s Rule, the effects of a marginal reduction in τ on equilibrium prices and qualities are given by, respectively,

$$\displaystyle \begin{aligned} \frac{\partial p^{\ast }}{\partial \tau }=\frac{\frac{\partial F_{q}}{ \partial \tau }\frac{\partial F_{p}}{\partial q^{\ast }}-\frac{\partial F_{p} }{\partial \tau }\frac{\partial F_{q}}{\partial q^{\ast }}}{\frac{\partial F_{p}}{\partial p^{\ast }}\frac{\partial F_{q}}{\partial q^{\ast }}-\frac{ \partial F_{q}}{\partial p^{\ast }}\frac{\partial F_{p}}{\partial q^{\ast }}} \end{aligned} $$
(12.48)

and

$$\displaystyle \begin{aligned} \frac{\partial q^{\ast }}{\partial \tau }=\frac{\frac{\partial F_{q}}{ \partial p^{\ast }}\frac{\partial F_{p}}{\partial \tau }-\frac{\partial F_{p} }{\partial p^{\ast }}\frac{\partial F_{q}}{\partial \tau }}{\frac{\partial F_{p}}{\partial p^{\ast }}\frac{\partial F_{q}}{\partial q^{\ast }}-\frac{ \partial F_{q}}{\partial p^{\ast }}\frac{\partial F_{p}}{\partial q^{\ast }}} . \end{aligned} $$
(12.49)

A sufficient (but not necessary) condition for the numerator in (12.48) to be positive (and thus for ∂p ∂τ to be positive) is ∂F p∂q ≤ 0, which requires \(\partial ^{2}c\left ( 1/2,q^{\ast }\right ) /\partial D_{i}\partial q_{i}\leq 0\). By applying the relevant expressions in (12.41)–(12.46), (12.48) can be expressed as (12.9) in Sect. 12.2. Using that expression, it is straightforward to show that \(\partial p^{\ast }/\partial \tau >\left ( <\right ) 0\) if

$$\displaystyle \begin{aligned} \sigma _{v}:=-\frac{v^{\prime \prime }\left( \pi \left( p^{\ast },q^{\ast }\right) \right) }{v^{\prime }\left( \pi \left( p^{\ast },q^{\ast }\right) \right) }<\left( >\right) 1-\frac{b^{\prime \prime }\left( q^{\ast }\right) }{v^{\prime }\left( \pi \left( p^{\ast },q^{\ast }\right) \right) \frac{ \partial ^{2}c\left( \frac{1}{2},q^{\ast }\right) }{\partial q_{i}^{2}}}. \end{aligned} $$
(12.50)

What is the scope for a price increase as a result of more competition, that is, ∂p ∂τ < 0? Using again (12.48), ∂p ∂τ < 0 requires

$$\displaystyle \begin{aligned} \frac{\partial F_{p}}{\partial q^{\ast }}>\frac{\frac{\partial F_{p}}{ \partial \tau }\frac{\partial F_{q}}{\partial q^{\ast }}}{\frac{\partial F_{q}}{\partial \tau }}. \end{aligned} $$
(12.51)

On the other hand, equilibrium existence requires

$$\displaystyle \begin{aligned} \frac{\partial F_{p}}{\partial q^{\ast }}<\frac{\frac{\partial F_{p}}{ \partial p^{\ast }}\frac{\partial F_{q}}{\partial q^{\ast }}}{\frac{\partial F_{q}}{\partial p^{\ast }}}. \end{aligned} $$
(12.52)

Thus, a price increase as a result of more competition is possible only if

$$\displaystyle \begin{aligned} \frac{\frac{\partial F_{p}}{\partial p^{\ast }}\frac{\partial F_{q}}{ \partial q^{\ast }}}{\frac{\partial F_{q}}{\partial p^{\ast }}}>\frac{\frac{ \partial F_{p}}{\partial \tau }\frac{\partial F_{q}}{\partial q^{\ast }}}{ \frac{\partial F_{q}}{\partial \tau }}. \end{aligned} $$
(12.53)

Using (12.41)–(12.46), this condition is equivalent to the condition

$$\displaystyle \begin{aligned} \frac{\sigma _{u}}{\sigma _{v}}>\frac{-\left( \left( p^{\ast }-\frac{ \partial c\left( \frac{1}{2},q^{\ast }\right) }{\partial D_{i}}\right) \beta -2\tau \frac{\partial c\left( \frac{1}{2},q^{\ast }\right) }{\partial q_{i}} \right) }{2\beta \left( p^{\ast }-\frac{\partial c\left( \frac{1}{2},q^{\ast }\right) }{\partial D_{i}}\right) }, \end{aligned} $$
(12.54)

which is identical to the condition for ∂q ∂τ < 0 , given by (12.13) in Sect. 12.2. Thus, higher prices as a result of more competition is only possible if quality also increases.

Appendix 2

In this appendix we provide a relatively brief and general overview of the solution procedures for deriving the open-loop and feedback closed-loop equilibria presented in Sect. 12.2.3. For further details, we refer to Cellini et al. (2018).

1.1 I Open-Loop Solution

Given the optimisation problem of Provider i defined by (12.17), the current-value Hamiltonian is given byFootnote 19

$$\displaystyle \begin{aligned} H_{i}&=\left( p_{i}-c\right) \left( \frac{1}{2}+\frac{\beta \left( q_{i}-q_{j}\right) }{2\tau }-\frac{p_{i}-p_{j}}{2\tau }\right) \\&\quad -\frac{\gamma }{2}I_{i}^{2}-\frac{\theta }{2}q_{i}{}^{2}+\mu _{i}\left( I_{i}-\delta q_{i}\right) +\mu _{j}\left( I_{j}-\delta q_{j}\right), \end{aligned} $$
(12.55)

where μ i and μ j are the current-value co-state variables associated with the two state equations. The solution is a set of linear differential equations that satisfy the following conditions: (i) ∂H i∂I i = 0, (ii) ∂H i∂p i = 0, (iii) \( \dot {\mu }_{i}=\rho \mu _{i}-\partial H_{i}/\partial q_{i}\), (iv) \(\dot {q} _{i}=\partial H_{i}/\partial \mu _{i}\) and (v) \(\dot {\mu }_{j}=\rho \mu _{j}-\partial H_{i}/\partial q_{j}\). In addition, the solution has to satisfy the transversality condition limt→+e ρtμ i(t)q i(t) = 0. The second-order conditions are satisfied if the Hamiltonian is concave in the control and state variables (Léonard and van Long 1992), which requires \(H_{I_{i}I_{i}}\ =-\ \gamma <0\), \( H_{p_{i}p_{i}}=-1/\tau <0\), \(H_{q_{i}q_{i}}=-\theta <0\) and \( H_{p_{i}p_{i}}H_{q_{i}q_{i}}-\left ( H_{q_{i}p_{i}}\right ) ^{2}=\left ( 4\tau \theta -\beta ^{2}\right ) /4\tau ^{2}>0\). Thus, the solution exists if the cost parameters τ and/or θ are sufficiently large relative to the marginal willingness to pay for quality, β.

From conditions (i)–(v) we can derive

$$\displaystyle \begin{aligned} p_{i}=w+\tau +\frac{\beta (q_{i}-q_{j})}{3}, \end{aligned} $$
(12.56)
$$\displaystyle \begin{aligned} \dot{I}_{i}=\left( \delta +\rho \right) I_{i}+\frac{\theta }{\gamma }q_{i}- \frac{\beta \left( p_{i}-c\right) }{2\tau \gamma }, \end{aligned} $$
(12.57)

which characterise the optimal prices set in each period and the optimal dynamic investment path. In the steady state, \(\dot {q}_{i}=\dot {I}_{i}=0\), q i = q j = q OL and p i = p j = p OL. Using (12.56)–(12.57) and the dynamic constraint (12.14), the steady-state prices and qualities are given by (12.18)–(12.19) in Sect. 12.2.

1.2 I Feedback Closed-Loop Solution

To solve for the feedback closed-loop solution, we restrict attention to stationary linear Markovian strategies, which we derive using the Hamilton-Jacobi-Bellman (HJB) equation. Since the instantaneous objective function and the linear dynamic constraint of Provider i constitute a linear-quadratic problem, we define the value function as

$$\displaystyle \begin{aligned} V^{i}(q_{i},q_{j})=\alpha _{0}+\alpha _{1}q_{i}+\alpha _{2}q_{j}+(\alpha _{3}/2)q_{i}^{2}+(\alpha _{4}/2)q_{j}^{2}+\alpha _{5}q_{i}q_{j}. \end{aligned} $$
(12.58)

If we define the investment strategies as functions I i = ϕ i(q i, q j) and I j = ϕ j(q i, q j), the above-defined value must satisfy the HJB equation, given by

$$\displaystyle \begin{aligned} \rho V^{i}(q_{i},q_{j})=\max \left \{ \begin{array}{c} \left( p_{i}-c\right) \left( \frac{1}{2}+\frac{\beta \left( q_{i}-q_{j}\right) }{2\tau }-\frac{p_{i}-p_{j}}{2\tau }\right) -\frac{\gamma }{2}I_{i}^{2}-\frac{\theta }{2}q_{i}{}^{2} \\ +V_{q_{i}}^{i}(q_{i},q_{j})\left( I_{i}-\delta q_{i}\right) +V_{q_{j}}^{i}(q_{i},q_{j})\left( I_{j}-\delta q_{j}\right) \end{array} \right \} . \end{aligned} $$
(12.59)

Maximisation of the right-hand side of (12.59) with respect to I i yields \( V_{q_{i}}^{i}=\gamma I_{i}\), which after substitution yields

$$\displaystyle \begin{aligned} I_{i}=\phi _{i}(q_{i},q_{j})=\frac{\alpha _{1}+\alpha _{3}q_{i}+\alpha _{5}q_{j}}{\gamma },\quad i,j=1,2;\quad i\neq j. \end{aligned} $$
(12.60)

Maximisation of the right-hand side of (12.59) with respect to p i yields

$$\displaystyle \begin{aligned} \frac{1}{2}+\frac{\beta \left( q_{i}-q_{j}\right) }{2\tau }-\frac{p_{i}-p_{j} }{2\tau }-\left( p_{i}-w\right) \frac{1}{2\tau }=0,\quad i,j=1,2;\quad i\neq j. \end{aligned} $$
(12.61)

Solving the two-equation system defined by (12.61) yields

$$\displaystyle \begin{aligned} p_{i}=w+\tau +\frac{\beta \left( q_{i}-q_{j}\right) }{3},\quad i,j=1,2;\quad i\neq j. \end{aligned} $$
(12.62)

By substituting I i = ϕ i(q i, q j), I j = ϕ j(q i, q j), \(V_{q_{i}}^{i}(q_{i},q_{j})=\alpha _{1}+\alpha _{3}q_{i}+\alpha _{5}q_{j}\), \(V_{q_{j}}^{i}=\alpha _{2}+\alpha _{4}q_{j}+\alpha _{5}q_{i}\) and V i, as defined by (12.58), into the HJB equation, we obtain

$$\displaystyle \begin{aligned} &\left( \rho \alpha _{0}-\frac{1}{2}\tau -\frac{1}{2\gamma }\alpha _{1}^{2}- \frac{1}{\gamma } \alpha _{1}\alpha _{2}\right)\\ &\quad +q_{i}\left(\alpha _{1}\left( \delta +\rho \right) -\frac{1}{3 }\beta -\frac{1}{\gamma }\alpha _{1}\alpha _{3}-\frac{1}{\gamma }\alpha _{2}\alpha _{5}-\frac{1}{\gamma }\alpha _{1}\alpha _{5}\right)\\ &\quad +q_{j}\left( \alpha _{2}\left( \delta +\rho \right) +\frac{1}{3}\beta - \frac{1}{\gamma }\alpha _{2}\alpha _{3}-\frac{1}{\gamma }\alpha _{1}\alpha _{4}-\frac{1}{\gamma }\alpha _{1}\alpha _{5}\right)\\ &\quad +q_{i}^{2}\left( \alpha _{3} \left( \delta +\frac{1}{2}\rho \right) -\frac{1}{2\gamma }\alpha _{3}^{2}-\frac{1}{\gamma }\alpha _{5}^{2}+ \frac{1}{2}\theta -\frac{1}{18}\frac{\beta ^{2}}{\tau }\right) \\ &\quad +q_{j}^{2}\left( \alpha _{4}\left( \delta +\frac{1}{2}\rho \right) - \frac{1}{\gamma }\alpha _{3}\alpha _{4}-\frac{1}{2\gamma } \alpha _{5}^{2}- \frac{1}{18}\frac{\beta ^{2}}{\tau }\right)\\ &\quad +q_{i}q_{j}\left( \left( 2\delta +\rho \right) \alpha _{5}+\frac{1}{9} \frac{\beta ^{2}}{\tau }-\frac{2}{\gamma }\alpha _{3}\alpha _{5} - \frac{1}{\gamma }\alpha _{4}\alpha _{5}\right)\\ &\quad =0 \end{aligned} $$
(12.63)

There are six possible solutions. By imposing the (sufficient but not necessary) condition

$$\displaystyle \begin{aligned} \frac{9}{4}\tau \left( \left( \delta +\frac{1}{2}\rho \right) ^{2}\gamma +\theta \right) \geq \beta ^{2}, \end{aligned} $$
(12.64)

it can be shown that only one of these solutions satisfy the criteria for equilibrium existence.Footnote 20 In this unique solution, the coefficients of the equilibrium dynamic investment strategy, (12.21), are given by

$$\displaystyle \begin{aligned} \alpha _{1}=\frac{\beta \gamma }{3\left( \gamma \left( \delta +\rho \right) -\alpha _{3}\right) }>0, \end{aligned} $$
(12.65)
$$\displaystyle \begin{aligned} \alpha _{3}=\left( \delta +\frac{1}{2}\rho \right) \gamma -\left( \frac{ 36\tau \left( \left( \delta +\frac{1}{2}\rho \right) ^{2}\gamma +\theta \right) -5\beta ^{2}}{4\beta ^{2}}-\frac{81\tau \psi }{16\beta ^{2}\gamma } \right) \sqrt{\psi }<0, \end{aligned} $$
(12.66)
$$\displaystyle \begin{aligned} \alpha _{5}=-\frac{1}{2}\sqrt{\psi }<0, \end{aligned} $$
(12.67)

where

$$\displaystyle \begin{aligned} \psi :=\frac{4\gamma }{27}\left( 6\left( \left( \delta +\frac{1}{2}\rho \right) ^{2}\gamma +\theta \right) -\frac{\beta ^{2}}{\tau }-2\sqrt{3\varphi }\right) >0 \end{aligned} $$
(12.68)

and

$$\displaystyle \begin{aligned} \varphi :=\left( 3\left( \left( \delta +\frac{1}{2}\rho \right) ^{2}\gamma +\theta \right) -\frac{\beta ^{2}}{\tau }\right) \left( \left( \delta +\frac{ 1}{2}\rho \right) ^{2}\gamma +\theta \right) >0. \end{aligned} $$
(12.69)

The steady-state solution, (12.22)–(12.23), is then derived by setting q i = q j = I iδ, which implies \(\dot {I}_{i}=0\).

Appendix 3

In this appendix we provide the underlying details of the comparative statics results in the n-firm Salop model presented in Sect. 12.3.

From (12.27)–(12.28), which implicitly define the symmetric Nash equilibrium, we derive

$$\displaystyle \begin{aligned} \frac{\partial G_{p}}{\partial p^{\ast }}=-\frac{u^{\prime }\left( y\left( p^{\ast }\right) \right) }{\tau }+\left( p^{\ast }-\frac{\partial c\left( \frac{1}{n},q^{\ast }\right) }{\partial D_{i}}\right) \frac{u^{\prime \prime }\left( y\left( p^{\ast }\right) \right) }{\tau }<0, \end{aligned} $$
(12.70)
$$\displaystyle \begin{aligned} \frac{\partial G_{q}}{\partial q^{\ast }}&=-v^{\prime \prime }\left( \pi \left( p^{\ast },q^{\ast }\right) \right) \frac{\partial ^{2}c\left( \frac{1 }{n},q^{\ast }\right) }{\partial q_{i}^{2}}\\&\quad -v^{\prime }\left( \pi \left( p^{\ast },q^{\ast }\right) \right) \left[ \frac{\partial ^{2}c\left( \frac{1 }{n},q^{\ast }\right) }{\partial D_{i}\partial q_{i}}\frac{\beta }{\tau }+ \frac{\partial ^{2}c\left( \frac{1}{n},q^{\ast }\right) }{\partial q_{i}^{2}} \right] +b^{\prime \prime }\left( q^{\ast }\right) <0, \end{aligned} $$
(12.71)
$$\displaystyle \begin{aligned} \frac{\partial G_{p}}{\partial q^{\ast }}=\frac{\partial ^{2}c\left( \frac{1 }{n},q^{\ast }\right) }{\partial D_{i}\partial q_{i}}\frac{u^{\prime }\left( y\left( p^{\ast }\right) \right) }{\tau }>\left( <\right) 0\mbox{ if }\frac{ \partial ^{2}c\left( \frac{1}{2},q^{\ast }\right) }{\partial D_{i}\partial q_{i}}>\left( <\right) 0, \end{aligned} $$
(12.72)
$$\displaystyle \begin{aligned} \frac{\partial G_{q}}{\partial p^{\ast }}&=v^{\prime \prime }\left( \pi \left( p^{\ast },q^{\ast }\right) \right) \frac{1}{n}\left[ \left( p^{\ast }- \frac{\partial c\left( \frac{1}{n},q^{\ast }\right) }{\partial D_{i}}\right) \frac{\beta }{\tau }-\frac{\partial c\left( \frac{1}{n},q^{\ast }\right) }{ \partial q_{i}}\right] \\&\quad +v^{\prime }\left( \pi \left( p^{\ast },q^{\ast }\right) \right) \frac{\beta }{\tau }>0, \end{aligned} $$
(12.73)
$$\displaystyle \begin{aligned} \frac{\partial G_{p}}{\partial n}=-\frac{1}{n^{2}}\left( 1+\frac{\partial ^{2}c\left( \frac{1}{n},q^{\ast }\right) }{\partial D_{i}^{2}}\frac{ u^{\prime }\left( y\left( p^{\ast }\right) \right) }{\tau }\right) <0, \end{aligned} $$
(12.74)
$$\displaystyle \begin{aligned} \frac{\partial G_{q}}{\partial n}=\frac{v^{\prime }\left( \pi \left( p^{\ast },q^{\ast }\right) \right) }{n^{2}}\left[ \frac{\partial ^{2}c\left( \frac{1 }{n},q^{\ast }\right) }{\partial D_{i}^{2}}\frac{\beta }{\tau }+\frac{ \partial ^{2}c\left( \frac{1}{n},q^{\ast }\right) }{\partial D_{i}\partial q_{i}}\right] \lessgtr 0. \end{aligned} $$
(12.75)

Existence and stability of the Nash equilibrium require that ∂G p∂p  < 0, ∂G q∂q  < 0 and \( \left ( \partial G_{p}/\partial p^{\ast }\right ) \left ( \partial G_{q}/\partial q^{\ast }\right ) -\left ( \partial G_{q}/\partial p^{\ast }\right ) \left ( \partial G_{p}/\partial q^{\ast }\right ) >0\). In qualitative terms, these conditions are similar to the equivalent conditions in the duopoly version of the model.

Applying Cramer’s Rule, the effects of a marginal increase in n on equilibrium prices and qualities are given by, respectively,

$$\displaystyle \begin{aligned} \frac{\partial p^{\ast }}{\partial n}=\frac{\frac{\partial G_{q}}{\partial n} \frac{\partial G_{p}}{\partial q^{\ast }}-\frac{\partial G_{p}}{\partial n} \frac{\partial G_{q}}{\partial q^{\ast }}}{\frac{\partial G_{p}}{\partial p^{\ast }}\frac{\partial G_{q}}{\partial q^{\ast }}-\frac{\partial G_{q}}{ \partial p^{\ast }}\frac{\partial G_{p}}{\partial q^{\ast }}} \end{aligned} $$
(12.76)

and

$$\displaystyle \begin{aligned} \frac{\partial q^{\ast }}{\partial n}=\frac{\frac{\partial G_{q}}{\partial p^{\ast }}\frac{\partial G_{p}}{\partial n}-\frac{\partial G_{p}}{\partial p^{\ast }}\frac{\partial G_{q}}{\partial n}}{\frac{\partial G_{p}}{\partial p^{\ast }}\frac{\partial G_{q}}{\partial q^{\ast }}-\frac{\partial G_{q}}{ \partial p^{\ast }}\frac{\partial G_{p}}{\partial q^{\ast }}}. \end{aligned} $$
(12.77)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brekke, K.R., Siciliani, L., Straume, O.R. (2020). Quality and Price Competition in Spatial Markets. In: Colombo, S. (eds) Spatial Economics Volume I. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-40098-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40098-9_12

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-030-40097-2

  • Online ISBN: 978-3-030-40098-9

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics