Skip to main content

Turbulent Forced and Mixed Convection Heat Transfer in Internal Flows

  • Chapter
  • First Online:
Rheology of Drag Reducing Fluids
  • 353 Accesses

Abstract

Chapter 5 treats turbulent forced and mixed convection heat transfer in internal flows. It is well-known that the heat transfer rate can be reasonably well estimated without solving the energy equation using momentum/heat transfer analogies. Expressions for the local Stanton numbers are derived for external flow (vertical pipes) and internal flow (circular pipes) using the analogy. An approximate theoretical analysis of the effect of buoyancy on the heat transfer to drag reducing fluids for upward flow in vertical pipes under turbulent conditions is also considered in this chapter. A criterion is suggested for controlling the reduction in heat transfer due to natural convection to less than 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Astarita, G., & Marrucci, G. (1966). Heat transfer in viscoelastic liquids in turbulent flow. In Proc. 36th Int. Cong. Ind. Chem., Brussels.

    Google Scholar 

  • Bewersdorff, H. W. (1984). Effect of injected polymer thread on turbulent properties of pipe flow. In R. H. J. Sellin & R. T. Moses (Eds.), Proc. third intl. conf. on drag reduction (pp. B4.1–B4.8).

    Google Scholar 

  • Cho, Y. I., & Hartnett, J. P. (1980). Analogy for viscoelastic fluids – momentum, heat and mass transfer in turbulent pipe flow. Letters in Heat and Mass Transfer, 7, 339–346.

    Google Scholar 

  • De Young, S. H., & Scheele, G. F. (1970). Natural convection distorted non-newtonian flow in a vertical pipe. AICHE Journal, 16(5), 712–717.

    Article  Google Scholar 

  • Diamant, Y., & Poreh, M. (1976). Heat transfer in flows with drag reduction. Advances in Heat Transfer, 12, 77–113.

    Article  Google Scholar 

  • Dudukovic, A. (1988). Encyclopedia of fluid mechanics, vol. 7, ch. 12. In N. P. Cheremisinoff (Ed.), Analogies between momentum, heat and mass transfer in dilute polymer solutions (pp. 341–357). Houston, TX: Gulf Publishing Co.

    Google Scholar 

  • Friend, W. L., & Metzner, A. B. (1958). Turbulent heat transfer inside tubes and the analogy among heat, mass, and momentum transfer. AICHE Journal, 4(4), 393–402.

    Article  Google Scholar 

  • Gasljevic, K., Aguilar, G., & Matthys, E. F. (2000). Buoyancy effects on heat transfer and temperature profiles in horizontal pipe flow of drag-reducing fluids. International Journal of Heat and Mass Transfer, 43(23), 4267–4274.

    Article  MATH  Google Scholar 

  • Gupta, M. K., Metzner, A. B., & Hartnett, J. P. (1967). Turbulent heat transfer characteristics of viscoelastic fluids. International Journal of Heat and Mass Transfer, 10, 1121–1224.

    Article  Google Scholar 

  • Jayatillaka, C. I. (1969). The influence of prandtl number and surface roughness on the resistance of the laminar sublayer to momentum and heat transfer. In U. Grigull & E. Hahne (Eds.), Progress in heat and mass transfer (pp. 193–329). New York: Pergamon Press.

    Google Scholar 

  • Kale, D. D. (1977). An analysis of heat transfer to turbulent flow of drag reducing fluids. International Journal of Heat and Mass Transfer, 20(10), 1077–1081.

    Article  Google Scholar 

  • Kawase, Y., & Ulbrecht, J. (1982). Turbulent heat and mass transfer to turbulent flow of drag reducing fluids. Chemical Engineering Science, 37(7), 1039–1046.

    Article  Google Scholar 

  • Marner, W. J., & McMillan, H. K. (1972). Combined free and forced laminar non-newtonian convection in a vertical tube with constant wall temperature. Chemical Engineering Science, 27(3), 473–488.

    Article  Google Scholar 

  • Marner, W. J., & Rehfuss, R. A. (1972). Buoyancy effects on fully developed laminar non-newtonian flow in a vertical tube. Chemical Engineering Journal, 3, 294–300.

    Article  Google Scholar 

  • Metzner, A. B., & Friend, P. S. (1959). Heat transfer to turbulent non-newtonian fluids. Industrial and Engineering Chemistry, 51, 879–882.

    Article  Google Scholar 

  • Metzner, A. B., & Gluck, D. F. (1960). Heat transfer to non-newtonian fluids under laminar flow conditions. Chemical Engineering Science, 12, 185–190.

    Article  Google Scholar 

  • Mizushina, T., Usui, H., & Yamamoto, T. (1975). Turbulent heat transfer to viscoelastic fluids flow in pipe. Letters in Heat Mass Transfer, 2(1), 19–26.

    Article  Google Scholar 

  • Nakayama, A., Koyama, H., & Ohsawa, S. (1984). Momentum/heat transfer analogy for turbulent boundary layers in mild pressure gradients. AIAA Journal, 22, 841–844.

    Article  Google Scholar 

  • Oliver, D. R., & Jenson, V. G. (1964). Heat transfer to pseudoplastic fluids in laminar flow in horizontal tubes. Chemical Engineering Science, 19(2), 115–129.

    Article  Google Scholar 

  • Patterson, G. K., Chosnek, J., & Zakin, J. L. (1977). Turbulence structure in drag reducing polymer solutions. Physics of Fluids, 20(10), S89–S99.

    Article  Google Scholar 

  • Poreh, M., & Paz, U. (1968). Turbulent heat transfer to dilute polymer solutions. International Journal of Heat and Mass Transfer, 11(5), 805–818.

    Article  Google Scholar 

  • Scheele, G. F., & Greene, H. L. (1971). Non-newtonian flow stability in a heated pipe at low reynolds numbers. Industrial and Engineering Chemistry Fundamentals, 10(1), 102–113.

    Article  Google Scholar 

  • Seyer, F. A., & Metzner, A. B. (1969). Turbulence phenomena in drag reducing systems. AICHE Journal, 15(3), 426–434.

    Article  Google Scholar 

  • Shenoy, A. V. (1980a). A correlating equation for combined laminar forced and free convection heat transfer to power-law fluids. AICHE Journal, 26(3), 505–507.

    Article  Google Scholar 

  • Shenoy, A. V. (1980b). Combined laminar forced and free convection heat transfer to viscoelastic fluids. AICHE Journal, 26(4), 683–685.

    Article  Google Scholar 

  • Shenoy, A. V. (1984a). Natural convection effects o heat transfer to power-law fluids flowing under turbulent conditions in vertical pipes. International Communications in Heat Mass Transfer, 11(5), 467–476.

    Article  Google Scholar 

  • Shenoy, A. V. (1984b). Laminar mixed convection heat transfer from an isothermal inclined flat plate to power-law fluids. AICHE Journal, 30(5), 824–826.

    Article  Google Scholar 

  • Shenoy, A. V. (1986). Turbulent flow of mildly elastic fluids through rotating straight circular tubes. Journal of Applied Sciences Research, 43(1), 39–54.

    MATH  Google Scholar 

  • Shenoy, A. V. (1987). Effects of bouyancy on heat transfer during turbulent flow of drag reducing fluids in vertical pipes. Warme- und Stoffubertragung, 21(1), 15–18.

    Article  MathSciNet  Google Scholar 

  • Shenoy, A. V. (1988). Encyclopedia of fluid mechanics, vol. 7, ch. 16. In N. P. Cheremisinoff (Ed.), Turbulent flow velocity profiles in drag-reducing fluids (pp. 479–503). Houston, TX: Gulf Publishing Co.

    Google Scholar 

  • Shenoy, A. V. (1992). Momentum/heat transfer analogy for drag reducing fluids during turbulent boundary layer flow with small pressure gradients. Canadian Journal of Chemical Engineering, 70(2), 375–380.

    Article  Google Scholar 

  • Shenoy, A. V., & Mashelkar, R. A. (1983). Engineering estimate of hydrodynamic entrance lengths in non-newtonian turbulent flow. Industrial and Engineering Chemistry Process Design and Development, 22(1), 165–168.

    Article  Google Scholar 

  • Shenoy, A. V., & Shintre, S. N. (1986). Developing and fully developed turbulent flow of drag reducing fluids in an annular duct. The Canadian Journal of Chemical Engineering, 64(2), 190–195.

    Article  Google Scholar 

  • Shenoy, A. V., & Talathi, M. M. (1985). Turbulent pipe flow velocity profile model for drag-reducing fluids. AICHE Journal, 31(3), 520–522.

    Article  Google Scholar 

  • Shenoy, A. V., Ranade, V. R., & Ulbrecht, J. J. (1980). Turbulent flow of mildly viscoelastic liquids in curved tubes. Chemical Engineering Communications, 5(5–6), 269–286.

    Article  Google Scholar 

  • Skelland, A. H. (1967). Non-newtonian flow and heat transfer. New York: Wiley.

    Google Scholar 

  • Smith, K. A., Keuroghlian, P. S., Virk, P. S., & Merrill, E. W. (1969). Heat transfer to drag reducing polymer solurions. AICHE Journal, 15(2), 294–297.

    Article  Google Scholar 

  • Thielen, W. (1981). Turbulenzstruktur in der rohrestromung viscoelastischer fluussigkeiten, dissertation, RWTH-Aachen, F. R. G.; partly communicated by P. Schummer and W. Thielen, structure of turbulence in viscoelastic fluids. Chemical Engineering Communications, 4(4–5), 593–606. (1980).

    Google Scholar 

  • Virk, P. S. (1971). Drag reduction in rough pipes. Journal of Fluid Mechanics, 45(2), 225–246.

    Article  Google Scholar 

  • Virk, P. S. (1975). Drag reduction fundamentals. AICHE Journal, 21(4), 625–656.

    Article  Google Scholar 

  • Wells, C. S. (1968). Turbulent heat transfer in drag reducing fluids. AICHE Journal, 14(3), 406–410.

    Article  Google Scholar 

  • Willmarth, W. W., Wei, T., & Lee, C. O. (1987). Laser anemometer measurements of Reynolds stress in a turbulent channel flow with drag reducing polymer additives. Physics of Fluids, 30(4), 933–935.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shenoy, A. (2020). Turbulent Forced and Mixed Convection Heat Transfer in Internal Flows. In: Rheology of Drag Reducing Fluids. Springer, Cham. https://doi.org/10.1007/978-3-030-40045-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40045-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40044-6

  • Online ISBN: 978-3-030-40045-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics