Skip to main content

Turbulent Natural Convection Heat Transfer in External Flows

  • Chapter
  • First Online:
  • 343 Accesses

Abstract

Chapter 4 handles turbulent natural convection heat transfer in external flow situations, such as the vertical flat plate and arbitrary geometric configurations which include the vertical cone pointing downward, horizontal circular cylinder, and the sphere. Expressions for the average Nusselt number are derived by similarity transformations using the approximate integral method of analysis under the assumption of high Prandtl numbers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Argumedo, A., Tung, T. T., & Chang, K. I. (1978). Rheological property measurements of drag reducing polyacrylamide solutions. Transactions Society of Rheology, 22, 449.

    Article  Google Scholar 

  • Bejan, A. (1984). Convective heat transfer. New York: Wiley.

    MATH  Google Scholar 

  • Cho, Y. I., & Hartnett, J. P. (1982). Non-newtonian fluids in circular pipe flows. Advances Heat Transfer, 15, 59–141.

    Article  Google Scholar 

  • Eckert, E. R., & Jackson, T. (1950). Analysis of turbulent free convection boundary layer on a flat plate (p. 2207). Washington, DC: National Advisory Committee of Aeronautics Technology Note.

    Google Scholar 

  • Griffiths, E., & Davis, A. H. (1922). The transmission of heat by radiation and convection (Report No. 9). DSIR-Food Invest. Bd. Spec.

    Google Scholar 

  • Hellums, J. D., & Churchill, S. W. (1964). Simplification of the mathematical description of boundary and initial value problems. AICHE Journal, 10(1), 110–114.

    Article  Google Scholar 

  • Marrucci, G., & Astarita, G. (1967). Turbulent heat transfer in viscoelastic liquids. Industrial and Engineering Chemistry Fundamentals, 6(3), 470–471.

    Article  Google Scholar 

  • Mizushina, T., & Usui, H. (1977). Reduction of eddy diffusion for momentum and heat in viscoelastic fluid flow in a circular tube. Physics of Fluids, 20(10), S100–S108.

    Article  Google Scholar 

  • Nakayama, A., & Koyama, H. (1985). An analysis of turbulent free convection about bodies of arbitrary geometrical configurations. Warme-und Stoffuberttragung, 19, 263–268.

    Article  Google Scholar 

  • Nakayama, A., & Shenoy, A. V. (1992). Turbulent free convection heat transfer to drag-reducing fluids from arbitrary geometric configurations. Transactions ASME Journal of Heat Transfer, 114(1), 127–134.

    Article  Google Scholar 

  • Ng, K. S., Cho, Y. I., & Hartnett, J. P. (1980). Heat transfer performance of concentrated polyethylene oxide and polyacrylamide solutions. AICHE Symposium Series No. 199, 76, 250–256.

    Google Scholar 

  • Shenoy, A. V. (1986). Turbulent flow of mildly elastic fluids through rotating straight circular tubes. Journal of Applied Sciences Research, 43(1), 39–54.

    MATH  Google Scholar 

  • Shenoy, A. V. (1987). Effects of bouyancy on heat transfer during turbulent flow of drag reducing fluids in vertical pipes. Warme- und Stoffubertragung, 21(1), 15–18.

    Article  MathSciNet  Google Scholar 

  • Shenoy, A. V., & Mashelkar, R. A. (1983). Engineering estimate of hydrodynamic entrance lengths in non-newtonian turbulent flow. Industrial and Engineering Chemistry Process Design and Development, 22(1), 165–168.

    Article  Google Scholar 

  • Shenoy, A. V., & Shintre, S. N. (1986). Developing and fully developed turbulent flow of drag reducing fluids in an annular duct. The Canadian Journal of Chemical Engineering, 64(2), 190–195.

    Article  Google Scholar 

  • Shenoy, A. V., Ranade, V. R., & Ulbrecht, J. J. (1980). Turbulent flow of mildly viscoelastic liquids in curved tubes. Chemical Engineering Communications, 5(5–6), 269–286.

    Article  Google Scholar 

  • Skelland, A. H. (1967). Non-newtonian flow and heat transfer. New York: Wiley.

    Google Scholar 

  • Tsukahara, T., & Kawaguchi, Y. (2011). Turbulent heat transfer in Drag-Reducing Channel flow of viscoelastic fluid. In A. Ahsan (Ed.), Evaporation, condensation and heat transfer (pp. 375–400). Croatia, Balkans. (www.intechopen.com): InTech.

    Google Scholar 

  • Virk, P. S. (1966). The toms phenomenon – Turbulent pipe flow of dilute polymer solutions, Mass. Inst. of Tech., (ScD Thesis).

    Google Scholar 

  • Virk, P. S. (1975). Drag reduction fundamentals. AICHE Journal, 21(4), 625–656.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shenoy, A. (2020). Turbulent Natural Convection Heat Transfer in External Flows. In: Rheology of Drag Reducing Fluids. Springer, Cham. https://doi.org/10.1007/978-3-030-40045-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40045-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40044-6

  • Online ISBN: 978-3-030-40045-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics