Skip to main content

Generation Regulation Control Systems

  • Chapter
  • First Online:
Hosting Capacity for Smart Power Grids

Abstract

Power systems are steadily growing to meet the power demand. Due to the challenges arising from fossil fuel exploitation and associated pollution, researchers are focusing on distributed generations (DG). The hosting capacity of the power system can be increased by increasing the DG and energy storage device (ESD). However, usage of DG creates challenges in operation due to its stochastic nature. The electricity generated from DG causes mismatch of generation and load demand. This causes voltage and frequency deviations and eventually affects system stability. Penetration of DG with conventional power system requires strategic approach for smooth operation and control. Steady-state operation of DG connected to microgrid operates in two types of analysis: (i) large signal analysis and (ii) small signal analysis. The control strategies for island mode are classified as communication based and droop based. Presently, Internet of Things (IoT) is replacing high bandwidth lines for the purpose of effective communication. Different countries are following their own control strategies for effective control of microgrids. This chapter discusses the communication-based control strategy implemented in Gasa Island, South Korea. Taiwanese microgrid under normal and disturbance conditions implemented with multi-agent system (MAS) platform in Taiwan using agent-oriented programming is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basso, T., & Friedman, N. R. (2003). IEEE 1547 national standard for interconnecting distributed generation: How could it help my facility? Preprint (No. NREL/JA-560-34875). National Renewable Energy Lab., Golden, Co.(US).

    Google Scholar 

  2. Kanniah, J., Tripathy, S. C., Malik, O. P., & Hope, G. S. (1984). Microprocessor-based adaptive load-frequency control. IEE Proceedings C Generation, Transmission and Distribution, 131(4), 121–128.

    Google Scholar 

  3. Radwan, A. A. A., & Mohamed, Y. A. R. I. (2014). Bidirectional power management in hybrid AC-DC islanded microgrid system. In 2014 IEEE PES General Meeting Conference & Exposition (pp. 1–5). IEEE.

    Google Scholar 

  4. Nejabatkhah, F., & Li, Y. W. (2014). Overview of power management strategies of hybrid AC/DC microgrid. IEEE Transactions on Power Electronics, 30(12), 7072–7089.

    Article  Google Scholar 

  5. Majumder, R., Chaudhuri, B., Ghosh, A., Majumder, R., & Ledwich, G. F. (2010). Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop. IEEE Transactions on Power Systems, 25(2), 796–808.

    Article  Google Scholar 

  6. Manickavasagam, K. (2014). Intelligent energy control center for distributed generators using multi-agent system. IEEE Transactions on Power Systems, 30(5), 2442–2449.

    Article  Google Scholar 

  7. Elgerd, O. I. (1982). Electric energy systems theory: An introduction. McGraw-Hill, New York, US.

    Google Scholar 

  8. Subbaraj, P., & Manickavasagam, K. (2007). Generation control of interconnected power systems using computational intelligence techniques. IET Generation, Transmission & Distribution, 1(4), 557–563.

    Article  Google Scholar 

  9. Michael, N. (2005). Artificial intelligence a guide to intelligent systems, Pearson Education Limited, New Delhi, India

    Google Scholar 

  10. Dos Santos, M. J., Pereira, J. L. R., De Oliveira, E. J., & da Silva, I. C. (2004). A new approach for area interchange control modeling. IEEE Transactions on Power Systems, 19(3), 1271–1276.

    Article  Google Scholar 

  11. Chang, S. K., & Brandwajn, V. (1988). Adjusted solutions in fast decoupled load flow. IEEE Transactions on Power Systems, 3(2), 726–733.

    Article  Google Scholar 

  12. Saikia, L. C., Nanda, J., & Mishra, S. (2011). Performance comparison of several classical controllers in AGC for multi-area interconnected thermal system. International Journal of Electrical Power & Energy Systems, 33(3), 394–401.

    Article  Google Scholar 

  13. Moreno-Munoz, A., De La Rosa, J. J. G., Lopez, M. A., & De Castro, A. G. (2009). Grid interconnection of distributed generation: The Spanish normative. In 2009 International Conference on Clean Electrical Power (pp. 466–470). IEEE.

    Google Scholar 

  14. Dugan, R. C., McDermott, T. E., & Ball, G. J. (2001). Planning for distributed generation. IEEE Industry Applications Magazine, 7(2), 80–88.

    Article  Google Scholar 

  15. Logenthiran, T., Naayagi, R. T., Woo, W. L., Phan, V. T., & Abidi, K. (2015). Intelligent control system for microgrids using multiagent system. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(4), 1036–1045.

    Article  Google Scholar 

  16. Thukaram, D., Iyengar, R., Khincha, H. P., & Parthasarathy, K. (1984). Steady state power flow analysis incorporating load and generation regulation characteristics. Journal of the Institution of Engineers (India), 64(5), 274–279.

    Google Scholar 

  17. https://www.springer.com/productFlyer_978-3-540-76283-6.pdf?SGWID=0-0-1297-173779129-0

  18. Eid, B. M., Rahim, N. A., Selvaraj, J., & El Khateb, A. H. (2014). Control methods and objectives for electronically coupled distributed energy resources in microgrids: A review. IEEE Systems Journal, 10(2), 446–458.

    Article  Google Scholar 

  19. Ren, W., & Beard, R. W. (2008). Distributed consensus in multi-vehicle cooperative control (pp. 71–82). London: Springer.

    Book  MATH  Google Scholar 

  20. Behjati, H., Davoudi, A., & Lewis, F. (2014). Modular DC–DC converters on graphs: Cooperative control. IEEE Transactions on Power Electronics, 29(12), 6725–6741.

    Article  Google Scholar 

  21. Nasirian, V., Moayedi, S., Davoudi, A., & Lewis, F. L. (2014). Distributed cooperative control of DC microgrids. IEEE Transactions on Power Electronics, 30(4), 2288–2303.

    Article  Google Scholar 

  22. Baghaee, H. R., Mirsalim, M., & Gharehpetian, G. B. (2016). Performance improvement of multi-DER microgrid for small-and large-signal disturbances and nonlinear loads: Novel complementary control loop and fuzzy controller in a hierarchical droop-based control scheme. IEEE Systems Journal, 12(1), 444–451.

    Article  Google Scholar 

  23. Zhao, Z., Yang, P., Guerrero, J. M., Xu, Z., & Green, T. C. (2015). Multiple-time-scales hierarchical frequency stability control strategy of medium-voltage isolated microgrid. IEEE Transactions on Power Electronics, 31(8), 5974–5991.

    Article  Google Scholar 

  24. Wei, B., Yuehao, Y., Bo, K., Yuanhong, C., & Xin, L. (2015). An novel hierarchical control of microgrid composed of multi-droop controlled distributed power resources. In 2015 5th international conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT) (pp. 2173–2178). IEEE.

    Google Scholar 

  25. Husein, M., Hau, V. B., Chung, I. Y., Chae, W. K., & Lee, H. J. (2017). Design and dynamic performance analysis of a stand-alone microgrid. Journal of Electrical Engineering & Technology, 12(5), 1777–1788.

    Google Scholar 

  26. http://microgrid-symposiums.org/wpcontent/uploads/2014/12/tianjin_bo-hyung-cho.pdf

  27. Choi, C. S., Jeong, J. D., Lee, I. W., & Park, W. K. (2018). LoRa based renewable energy monitoring system with open IoT platform. In 2018 international conference on Electronics, Information, and Communication (ICEIC) (pp. 1–2). IEEE.

    Google Scholar 

  28. Nayanatara, C., Divya, S., & Mahalakshmi, E. K. (2018). Micro-Grid management strategy with the integration of renewable energy using IoT. International conference on Computation of Power, Energy, Information and Communication (ICCPEIC) (pp. 160–165), IEEE.

    Google Scholar 

  29. Yang, Y., & Bollen, M. H. J. (2008). Power quality and reliability in distribution networks with increased levels of distributed generation’ (Report Elforsk, Stockholm, Sweden, 2008).

    Google Scholar 

  30. Saha, A., Saikia, L. C., Tasnin, W., Rajbongshi, R., & Saha, D. (2018). Automatic generation control of multi-area multisource system incorporating distributed generation units and RFB. 2nd international conference on Power, Energy and Environment: Towards Smart Technology (ICEPE) (pp. 1–6). Shillong, India.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manickavasagam, K., Karuppasamy, I., Puttaraj, V. (2020). Generation Regulation Control Systems. In: Zobaa, A., Abdel Aleem, S., Ismael, S., Ribeiro, P. (eds) Hosting Capacity for Smart Power Grids. Springer, Cham. https://doi.org/10.1007/978-3-030-40029-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40029-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40028-6

  • Online ISBN: 978-3-030-40029-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics