Skip to main content

Perioperative Pain Management

  • Chapter
  • First Online:
Pain Management for Clinicians

Abstract

Acute pain related to surgery is a common experience throughout the world. Despite well-known and widely available treatments, it is often untreated or undertreated. Optimal perioperative pain management addresses this pain by facilitating healing, combating the surgical stress response, and relieving suffering. Because opioid medications have had an outsized role in the treatment of perioperative pain, it has partially fueled the opioid crisis in the United States. This chapter will address evidence-based multimodal analgesia approaches and how to apply them within different Enhanced Recovery After Surgery (ERAS) pathways that aim to optimally decrease—if not prevent—postoperative pain, accelerate recovery, and improve the postoperative patient experience. It includes a shift away from opioid-based therapy and provides a roadmap on how to apply the best use of opioid-free analgesia and opioid-sparing analgesia via balanced perioperative pain management and how to layer analgesic approaches for ERAS pathways. The cornerstones of this approach are the rational selection of pain mechanism-specific medications and the strategic use of peripheral and central neural blockade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steiner C. Surgeries in hospital-based ambulatory surgery and hospital inpatient settings, 2014. Agency for Healthcare Research and Quality; 2017. Available from: www.hcupus.ahrq.gov/reports/statbriefs/sb223-Ambulatory-Inpatient-Surgeries-2014.pdf.

  2. Hall M. Ambulatory surgery data from hospitals and ambulatory surgery centers: United States 2010. National Center for Health Statistics; 2017. Available from: https://www.cdc.gov/nchs/data/nhsr/nhsr102.pdf.

  3. Practice guidelines for acute pain management in the perioperative setting. A report by the American Society of Anesthesiologists Task Force on Pain Management, Acute Pain Section. Anesthesiology. 1995;82(4):1071–81.

    Google Scholar 

  4. Practice guidelines for acute pain management in the perioperative setting: an updated report by the American Society of Anesthesiologists Task Force on Acute Pain Management. Anesthesiology. 2004;100(6):1573–81.

    Google Scholar 

  5. Practice guidelines for acute pain management in the perioperative setting: an updated report by the American Society of Anesthesiologists Task Force on Acute Pain Management. Anesthesiology. 2012;116(2):248–73.

    Google Scholar 

  6. Phillips DM. JCAHO pain management standards are unveiled. Joint Commission on Accreditation of Healthcare Organizations. JAMA. 2000;284(4):428–9.

    Article  CAS  PubMed  Google Scholar 

  7. Chou R, Gordon DB, de Leon-Casasola OA, Rosenberg JM, Bickler S, Brennan T, et al. Management of postoperative pain: a clinical practice guideline from the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists’ Committee on Regional Anesthesia, Executive Committee, and Administrative Council. J Pain. 2016;17(2):131–57.

    Article  PubMed  Google Scholar 

  8. Wick EC, Grant MC, Wu CL. Postoperative multimodal analgesia pain management with nonopioid analgesics and techniques: a review. JAMA Surg. 2017;152(7):691–7.

    Article  PubMed  Google Scholar 

  9. Meldrum ML. A capsule history of pain management. JAMA. 2003;290(18):2470–5.

    Article  CAS  PubMed  Google Scholar 

  10. Forget P. Opioid-free anaesthesia. Why and how? A contextual analysis. Anaesth Crit Care Pain Med. 2019;38(2):169–72.

    Article  PubMed  Google Scholar 

  11. Lowenstein E, Hallowell P, Levine FH, Daggett WM, Austen WG, Laver MB. Cardiovascular response to large doses of intravenous morphine in man. N Engl J Med. 1969;281(25):1389–93.

    Article  CAS  PubMed  Google Scholar 

  12. Stanley T. The wondrous story of anesthesia: the history of opioid use in anesthetic delivery. New York: Springer; 2014.

    Google Scholar 

  13. Soelberg CD, Brown RE Jr, Du Vivier D, Meyer JE, Ramachandran BK. The US opioid crisis: current federal and state legal issues. Anesth Analg. 2017;125(5):1675–81.

    Article  PubMed  Google Scholar 

  14. Alam A, Gomes T, Zheng H, Mamdani MM, Juurlink DN, Bell CM. Long-term analgesic use after low-risk surgery: a retrospective cohort study. Arch Intern Med. 2012;172(5):425–30.

    Article  PubMed  Google Scholar 

  15. Sun EC, Darnall BD, Baker LC, Mackey S. Incidence of and risk factors for chronic opioid use among opioid-naive patients in the postoperative period. JAMA Intern Med. 2016;176(9):1286–93.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Clarke H, Soneji N, Ko DT, Yun L, Wijeysundera DN. Rates and risk factors for prolonged opioid use after major surgery: population based cohort study. BMJ (Clinical research ed). 2014;348:g1251.

    Google Scholar 

  17. Drug Overdose Deaths: Centers for Disease Control and Prevention; 2019. Available from: https://www.cdc.gov/drugoverdose/data/statedeaths.html.

  18. Drug Overdose Deaths in the United States, 1999–2016: Centers for Disease Control and Prevention; 2019. Available from: https://www.cdc.gov/nchs/data/databriefs/db294_table.pdf#page=4.

  19. Understanding the Epidemic: Centers for Disease Control and Prevention; 2019. Available from: https://www.cdc.gov/drugoverdose/epidemic/index.html.

  20. Brummett CM, Waljee JF, Goesling J, Moser S, Lin P, Englesbe MJ, et al. New persistent opioid use after minor and major surgical procedures in US adults. JAMA Surg. 2017;152(6):e170504.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Olds C, Spataro E, Li K, Kandathil C, Most SP. Assessment of persistent and prolonged postoperative opioid use among patients undergoing plastic and reconstructive surgery. JAMA Facial Plast Surg. 2019;21(4):286–91.

    Article  PubMed  Google Scholar 

  22. Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity. Nature. 1983;306(5944):686–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ong CK, Lirk P, Seymour RA, Jenkins BJ. The efficacy of preemptive analgesia for acute postoperative pain management: a meta-analysis. Anesth Analg. 2005;100(3):757–73, table of contents

    Article  PubMed  Google Scholar 

  24. Moiniche S, Kehlet H, Dahl JB. A qualitative and quantitative systematic review of preemptive analgesia for postoperative pain relief: the role of timing of analgesia. Anesthesiology. 2002;96(3):725–41.

    Article  PubMed  Google Scholar 

  25. Rosero EB, Joshi GP. Preemptive, preventive, multimodal analgesia: what do they really mean? Plast Reconstr Surg. 2014;134(4 Suppl 2):85s–93s.

    Article  CAS  PubMed  Google Scholar 

  26. Katz J, Clarke H, Seltzer Z. Review article: preventive analgesia: quo vadimus? Anesth Analg. 2011;113(5):1242–53.

    Article  PubMed  Google Scholar 

  27. Kehlet H, Dahl JB. The value of “multimodal” or “balanced analgesia” in postoperative pain treatment. Anesth Analg. 1993;77(5):1048–56.

    Article  CAS  PubMed  Google Scholar 

  28. Woolf CJ. Pain: moving from symptom control toward mechanism-specific pharmacologic management. Ann Intern Med. 2004;140(6):441–51.

    Article  PubMed  Google Scholar 

  29. Memtsoudis SG, Poeran J, Zubizarreta N, Cozowicz C, Morwald EE, Mariano ER, et al. Association of multimodal pain management strategies with perioperative outcomes and resource utilization: a population-based study. Anesthesiology. 2018;128(5):891–902.

    Article  PubMed  Google Scholar 

  30. Pain terms: a list with definitions and notes on usage. Recommended by the IASP Subcommittee on Taxonomy. Pain. 1979;6(3):249.

    Google Scholar 

  31. Brummett CM, Janda AM, Schueller CM, Tsodikov A, Morris M, Williams DA, et al. Survey criteria for fibromyalgia independently predict increased postoperative opioid consumption after lower-extremity joint arthroplasty: a prospective, observational cohort study. Anesthesiology. 2013;119(6):1434–43.

    Article  CAS  PubMed  Google Scholar 

  32. De Oliveira GS Jr, Castro-Alves LJ, McCarthy RJ. Single-dose systemic acetaminophen to prevent postoperative pain: a meta-analysis of randomized controlled trials. Clin J Pain. 2015;31(1):86–93.

    Article  PubMed  Google Scholar 

  33. Toms L, McQuay HJ, Derry S, Moore RA. Single dose oral paracetamol (acetaminophen) for postoperative pain in adults. Cochrane Database Syst Rev. 2008;(4):CD004602.

    Google Scholar 

  34. McNicol ED, Ferguson MC, Haroutounian S, Carr DB, Schumann R. Single dose intravenous paracetamol or intravenous propacetamol for postoperative pain. Cochrane Database Syst Rev. 2016;(5):CD007126.

    Google Scholar 

  35. McNicol ED, Tzortzopoulou A, Cepeda MS, Francia MB, Farhat T, Schumann R. Single-dose intravenous paracetamol or propacetamol for prevention or treatment of postoperative pain: a systematic review and meta-analysis. Br J Anaesth. 2011;106(6):764–75.

    Article  CAS  PubMed  Google Scholar 

  36. Singla NK, Parulan C, Samson R, Hutchinson J, Bushnell R, Beja EG, et al. Plasma and cerebrospinal fluid pharmacokinetic parameters after single-dose administration of intravenous, oral, or rectal acetaminophen. Pain Pract. 2012;12(7):523–32.

    Article  PubMed  Google Scholar 

  37. Plunkett A, Haley C, McCoart A, Beltran T, Highland KB, Berry-Caban C, et al. A preliminary examination of the comparative efficacy of intravenous vs oral acetaminophen in the treatment of perioperative pain. Pain Med. 2017;18(12):2466–73.

    PubMed  Google Scholar 

  38. O’Neal JB, Freiberg AA, Yelle MD, Jiang Y, Zhang C, Gu Y, et al. Intravenous vs oral acetaminophen as an adjunct to multimodal analgesia after total knee arthroplasty: a prospective, randomized, Double-Blind Clinical Trial. J Arthroplasty. 2017;32(10):3029–33.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Politi JR, Davis RL 2nd, Matrka AK. Randomized prospective trial comparing the use of intravenous versus oral acetaminophen in total joint arthroplasty. J Arthroplasty. 2017;32(4):1125–7.

    Article  PubMed  Google Scholar 

  40. Fenlon S, Collyer J, Giles J, Bidd H, Lees M, Nicholson J, et al. Oral vs intravenous paracetamol for lower third molar extractions under general anaesthesia: is oral administration inferior? Br J Anaesth. 2013;110(3):432–7.

    Article  CAS  PubMed  Google Scholar 

  41. Hahn TW, Mogensen T, Lund C, Jacobsen LS, Hjortsoe NC, Rasmussen SN, et al. Analgesic effect of i.v. paracetamol: possible ceiling effect of paracetamol in postoperative pain. Acta Anaesthesiol Scand. 2003;47(2):138–45.

    Article  CAS  PubMed  Google Scholar 

  42. Oscier CD, Milner QJ. Peri-operative use of paracetamol. Anaesthesia. 2009;64(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  43. Graham GG, Scott KF, Day RO. Tolerability of paracetamol. Drug Saf. 2005;28(3):227–40.

    Article  CAS  PubMed  Google Scholar 

  44. Ong CK, Lirk P, Tan CH, Seymour RA. An evidence-based update on nonsteroidal anti-inflammatory drugs. Clin Med Res. 2007;5(1):19–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moore RA, Derry S, Aldington D, Wiffen PJ. Single dose oral analgesics for acute postoperative pain in adults – an overview of Cochrane reviews. Cochrane Database Syst Rev. 2015;(9):CD008659.

    Google Scholar 

  46. De Oliveira GS Jr, Agarwal D, Benzon HT. Perioperative single dose ketorolac to prevent postoperative pain: a meta-analysis of randomized trials. Anesth Analg. 2012;114(2):424–33.

    Article  PubMed  CAS  Google Scholar 

  47. Ekman EF, Wahba M, Ancona F. Analgesic efficacy of perioperative celecoxib in ambulatory arthroscopic knee surgery: a double-blind, placebo-controlled study. Arthroscopy. 2006;22(6):635–42.

    Article  PubMed  Google Scholar 

  48. Huang YM, Wang CM, Wang CT, Lin WP, Horng LC, Jiang CC. Perioperative celecoxib administration for pain management after total knee arthroplasty – a randomized, controlled study. BMC Musculoskelet Disord. 2008;9:77.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kinsella J, Moffat AC, Patrick JA, Prentice JW, McArdle CS, Kenny GN. Ketorolac trometamol for postoperative analgesia after orthopaedic surgery. Br J Anaesth. 1992;69(1):19–22.

    Article  CAS  PubMed  Google Scholar 

  50. Zeng AM, Nami NF, Wu CL, Murphy JD. The analgesic efficacy of nonsteroidal anti-inflammatory agents (NSAIDs) in patients undergoing cesarean deliveries: a meta-analysis. Reg Anesth Pain Med. 2016;41(6):763–72.

    Article  CAS  PubMed  Google Scholar 

  51. Recart A, Issioui T, White PF, Klein K, Watcha MF, Stool L, et al. The efficacy of celecoxib premedication on postoperative pain and recovery times after ambulatory surgery: a dose-ranging study. Anesth Analg. 2003;96(6):1631–5, table of contents.

    CAS  PubMed  Google Scholar 

  52. The Oxford League Table of Analgesic Efficacy: Bandolier. Available from: http://www.bandolier.org.uk/booth/painpag/Acutrev/Analgesics/lftab.html.

  53. Brunton LL, Goodman LS, Gilman AG, Parker KL. Goodman and Gilman’s manual of pharmacology and therapeutics. New York: McGraw-Hill; 2008.

    Google Scholar 

  54. Schafer AI. Effects of nonsteroidal anti-inflammatory therapy on platelets. Am J Med. 1999;106(5b):25s–36s.

    Article  CAS  PubMed  Google Scholar 

  55. Rusy LM, Houck CS, Sullivan LJ, Ohlms LA, Jones DT, McGill TJ, et al. A double-blind evaluation of ketorolac tromethamine versus acetaminophen in pediatric tonsillectomy: analgesia and bleeding. Anesth Analg. 1995;80(2):226–9.

    CAS  PubMed  Google Scholar 

  56. Strom BL, Berlin JA, Kinman JL, Spitz PW, Hennessy S, Feldman H, et al. Parenteral ketorolac and risk of gastrointestinal and operative site bleeding. A postmarketing surveillance study. JAMA. 1996;275(5):376–82.

    Article  CAS  PubMed  Google Scholar 

  57. White PF, Raeder J, Kehlet H. Ketorolac: its role as part of a multimodal analgesic regimen. Anesth Analg. 2012;114(2):250–4.

    Article  PubMed  Google Scholar 

  58. Harris RC Jr. Cyclooxygenase-2 inhibition and renal physiology. Am J Cardiol. 2002;89(6a):10d–7d.

    Article  CAS  PubMed  Google Scholar 

  59. Lee A, Cooper MG, Craig JC, Knight JF, Keneally JP. Effects of nonsteroidal anti-inflammatory drugs on postoperative renal function in adults with normal renal function. Cochrane Database Syst Rev. 2007;(2):CD002765.

    Google Scholar 

  60. Bell S, Rennie T, Marwick CA, Davey P. Effects of peri-operative nonsteroidal anti-inflammatory drugs on post-operative kidney function for adults with normal kidney function. Cochrane Database Syst Rev. 2018;(11):CD011274.

    Google Scholar 

  61. Abdul-Hadi O, Parvizi J, Austin MS, Viscusi E, Einhorn T. Nonsteroidal anti-inflammatory drugs in orthopaedics. J Bone Joint Surg Am. 2009;91(8):2020–7.

    PubMed  Google Scholar 

  62. Hassan I. NSAID use and colorectal anastomotic leaks. Caution and further investigation. J Gastrointest Surg. 2014;18(8):1405–6.

    Article  PubMed  Google Scholar 

  63. Saleh F, Jackson TD, Ambrosini L, Gnanasegaram JJ, Kwong J, Quereshy F, et al. Perioperative nonselective non-steroidal anti-inflammatory drugs are not associated with anastomotic leakage after colorectal surgery. J Gastrointest Surg. 2014;18(8):1398–404.

    Article  PubMed  Google Scholar 

  64. Subendran J, Siddiqui N, Victor JC, McLeod RS, Govindarajan A. NSAID use and anastomotic leaks following elective colorectal surgery: a matched case-control study. J Gastrointest Surg. 2014;18(8):1391–7.

    Article  PubMed  Google Scholar 

  65. Haddad NN, Bruns BR, Enniss TM, Turay D, Sakran JV, Fathalizadeh A, et al. Perioperative use of nonsteroidal anti-inflammatory drugs and the risk of anastomotic failure in emergency general surgery. J Trauma Acute Care Surg. 2017;83(4):657–61.

    Article  CAS  PubMed  Google Scholar 

  66. Hawkins AT, McEvoy MD, Wanderer JP, Ford MM, Hopkins MB, Muldoon RL, et al. Ketorolac use and anastomotic leak in elective colorectal surgery: a detailed analysis. Dis Colon Rectum. 2018;61(12):1426–34.

    PubMed  Google Scholar 

  67. Marsico F, Paolillo S, Filardi PP. NSAIDs and cardiovascular risk. J Cardiovasc Med (Hagerstown, Md). 2017;18 Suppl 1: Special Issue on The State of the Art for the Practicing Cardiologist: The 2016 Conoscere E Curare Il Cuore (CCC) Proceedings from the CLI Foundation:e40–e3.

    Article  CAS  PubMed  Google Scholar 

  68. FitzGerald GA. Cardiovascular pharmacology of nonselective nonsteroidal anti-inflammatory drugs and coxibs: clinical considerations. Am J Cardiol. 2002;89(6a):26d–32d.

    Article  CAS  PubMed  Google Scholar 

  69. Varga Z, Sabzwari SRA, Vargova V. Cardiovascular risk of nonsteroidal anti-inflammatory drugs: an under-recognized public health issue. Cureus. 2017;9(4):e1144.

    PubMed  PubMed Central  Google Scholar 

  70. Joshi GP, Gertler R, Fricker R. Cardiovascular thromboembolic adverse effects associated with cyclooxygenase-2 selective inhibitors and nonselective antiinflammatory drugs. Anesth Analg. 2007;105(6):1793–804, table of contents.

    Article  CAS  PubMed  Google Scholar 

  71. Liu SS, Bae JJ, Bieltz M, Ma Y, Memtsoudis S. Association of perioperative use of nonsteroidal anti-inflammatory drugs with postoperative myocardial infarction after total joint replacement. Reg Anesth Pain Med. 2012;37(1):45–50.

    Article  PubMed  CAS  Google Scholar 

  72. De Oliveira GS Jr, Almeida MD, Benzon HT, McCarthy RJ. Perioperative single dose systemic dexamethasone for postoperative pain: a meta-analysis of randomized controlled trials. Anesthesiology. 2011;115(3):575–88.

    Article  PubMed  CAS  Google Scholar 

  73. Waldron NH, Jones CA, Gan TJ, Allen TK, Habib AS. Impact of perioperative dexamethasone on postoperative analgesia and side-effects: systematic review and meta-analysis. Br J Anaesth. 2013;110(2):191–200.

    Article  CAS  PubMed  Google Scholar 

  74. Steward DL, Grisel J, Meinzen-Derr J. Steroids for improving recovery following tonsillectomy in children. Cochrane Database Syst Rev. 2011;(8):CD003997.

    Google Scholar 

  75. Halonen J, Halonen P, Jarvinen O, Taskinen P, Auvinen T, Tarkka M, et al. Corticosteroids for the prevention of atrial fibrillation after cardiac surgery: a randomized controlled trial. JAMA. 2007;297(14):1562–7.

    Article  CAS  PubMed  Google Scholar 

  76. Kehlet H. Glucocorticoids for peri-operative analgesia: how far are we from general recommendations? Acta Anaesthesiol Scand. 2007;51(9):1133–5.

    Article  CAS  PubMed  Google Scholar 

  77. Chong MA, Berbenetz NM, Lin C, Singh S. Perineural versus intravenous dexamethasone as an adjuvant for peripheral nerve blocks: a systematic review and meta-analysis. Reg Anesth Pain Med. 2017;42(3):319–26.

    Article  CAS  PubMed  Google Scholar 

  78. Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids--new mechanisms for old drugs. N Engl J Med. 2005;353(16):1711–23.

    Article  CAS  PubMed  Google Scholar 

  79. Westlund K. Pain pathways: peripheral, spinal, ascending, descending pathways. In: Practical management of pain. Philadelphia, PA: Elsevier; 2014. p. 87–112.

    Chapter  Google Scholar 

  80. Tsuei SE, Moore RG, Ashley JJ, McBride WG. Disposition of synthetic glucocorticoids. I. Pharmacokinetics of dexamethasone in healthy adults. J Pharmacokinet Biopharm. 1979;7(3):249–64.

    Article  CAS  PubMed  Google Scholar 

  81. Polderman JA, Farhang-Razi V, Van Dieren S, Kranke P, DeVries JH, Hollmann MW, et al. Adverse side effects of dexamethasone in surgical patients. Cochrane Database Syst Rev. 2018;(11):CD011940.

    Google Scholar 

  82. Corcoran T, Kasza J, Short TG, O’Loughlin E, Chan MT, Leslie K, et al. Intraoperative dexamethasone does not increase the risk of postoperative wound infection: a propensity score-matched post hoc analysis of the ENIGMA-II trial (EnDEX). Br J Anaesth. 2017;118(2):190–9.

    Article  CAS  PubMed  Google Scholar 

  83. Duncan AE, Abd-Elsayed A, Maheshwari A, Xu M, Soltesz E, Koch CG. Role of intraoperative and postoperative blood glucose concentrations in predicting outcomes after cardiac surgery. Anesthesiology. 2010;112(4):860–71.

    Article  PubMed  Google Scholar 

  84. Anitescu M. Pharmacology for the interventional pain physician. In: Practical management of pain. Philadelphia, PA: Elsevier; 2014. p. 596–603.

    Chapter  Google Scholar 

  85. Scott NB. Wound infiltration for surgery. Anaesthesia. 2010;65(Suppl 1):67–75.

    Article  PubMed  Google Scholar 

  86. Ventham NT, Hughes M, O’Neill S, Johns N, Brady RR, Wigmore SJ. Systematic review and meta-analysis of continuous local anaesthetic wound infiltration versus epidural analgesia for postoperative pain following abdominal surgery. Br J Surg. 2013;100(10):1280–9.

    Article  CAS  PubMed  Google Scholar 

  87. Young A, Buvanendran A. Multimodal systemic and intra-articular analgesics. Int Anesthesiol Clin. 2011;49(4):117–33.

    Article  PubMed  Google Scholar 

  88. Viscusi ER. Liposomal drug delivery for postoperative pain management. Reg Anesth Pain Med. 2005;30(5):491–6.

    Article  CAS  PubMed  Google Scholar 

  89. Hamilton TW, Athanassoglou V, Mellon S, Strickland LH, Trivella M, Murray D, et al. Liposomal bupivacaine infiltration at the surgical site for the management of postoperative pain. Cochrane Database Syst Rev. 2017;(2):CD011419.

    Google Scholar 

  90. Gorfine SR, Onel E, Patou G, Krivokapic ZV. Bupivacaine extended-release liposome injection for prolonged postsurgical analgesia in patients undergoing hemorrhoidectomy: a multicenter, randomized, double-blind, placebo-controlled trial. Dis Colon Rectum. 2011;54(12):1552–9.

    Article  PubMed  Google Scholar 

  91. Alijanipour P, Tan TL, Matthews CN, Viola JR, Purtill JJ, Rothman RH, et al. Periarticular injection of liposomal bupivacaine offers no benefit over standard bupivacaine in total knee arthroplasty: a prospective, randomized, Controlled Trial. J Arthroplasty. 2017;32(2):628–34.

    Article  PubMed  Google Scholar 

  92. Smith EB, Kazarian GS, Maltenfort MG, Lonner JH, Sharkey PF, Good RP. Periarticular liposomal bupivacaine injection versus intra-articular bupivacaine infusion catheter for analgesia after total knee arthroplasty: a double-blinded, randomized controlled trial. J Bone Joint Surg Am. 2017;99(16):1337–44.

    Article  PubMed  Google Scholar 

  93. Mont MA, Beaver WB, Dysart SH, Barrington JW, Del Gaizo DJ. Local infiltration analgesia with liposomal bupivacaine improves pain scores and reduces opioid use after total knee arthroplasty: results of a randomized controlled trial. J Arthroplasty. 2018;33(1):90–6.

    Article  PubMed  Google Scholar 

  94. Ilfeld BM, Gabriel RA, Eisenach JC. Liposomal bupivacaine infiltration for knee arthroplasty: significant analgesic benefits or just a bunch of fat? Anesthesiology. 2018;129(4):623–6.

    Article  CAS  PubMed  Google Scholar 

  95. Corman S, Shah N, Dagenais S. Medication, equipment, and supply costs for common interventions providing extended post-surgical analgesia following total knee arthroplasty in US hospitals. J Med Econ. 2018;21(1):11–8.

    Article  PubMed  Google Scholar 

  96. Ilfeld BM. Continuous peripheral nerve blocks: an update of the published evidence and comparison with novel, alternative analgesic modalities. Anesth Analg. 2017;124(1):308–35.

    Article  CAS  PubMed  Google Scholar 

  97. Richman JM, Liu SS, Courpas G, Wong R, Rowlingson AJ, McGready J, et al. Does continuous peripheral nerve block provide superior pain control to opioids? A meta-analysis. Anesth Analg. 2006;102(1):248–57.

    Article  PubMed  Google Scholar 

  98. Machi AT, Ilfeld BM. Continuous peripheral nerve blocks in the ambulatory setting: an update of the published evidence. Curr Opin Anaesthesiol. 2015;28(6):648–55.

    Article  CAS  PubMed  Google Scholar 

  99. Barreveld A, Witte J, Chahal H, Durieux ME, Strichartz G. Preventive analgesia by local anesthetics: the reduction of postoperative pain by peripheral nerve blocks and intravenous drugs. Anesth Analg. 2013;116(5):1141–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cousins MC, Carr DB, Horlocker TT, Bridenbaugh PO. Neural blockade in clinical anesthesia and pain medicine. 4th ed. Philadelphia: Lippincott, Williams & Wilkins; 2009.

    Google Scholar 

  101. Textbook of regional anesthesia and acute pain management. 2nd ed. McGraw-Hill. New York. Admir Hadzic; 2017.

    Google Scholar 

  102. Blumenthal S, Borgeat A, Neudorfer C, Bertolini R, Espinosa N, Aguirre J. Additional femoral catheter in combination with popliteal catheter for analgesia after major ankle surgery. Br J Anaesth. 2011;106(3):387–93.

    Article  CAS  PubMed  Google Scholar 

  103. Wegener JT, van Ooij B, van Dijk CN, Karayeva SA, Hollmann MW, Preckel B, et al. Long-term pain and functional disability after total knee arthroplasty with and without single-injection or continuous sciatic nerve block in addition to continuous femoral nerve block: a prospective, 1-year follow-up of a randomized controlled trial. Reg Anesth Pain Med. 2013;38(1):58–63.

    Article  PubMed  Google Scholar 

  104. Karmakar MK, Samy W, Li JW, Lee A, Chan WC, Chen PP, et al. Thoracic paravertebral block and its effects on chronic pain and health-related quality of life after modified radical mastectomy. Reg Anesth Pain Med. 2014;39(4):289–98.

    Article  PubMed  Google Scholar 

  105. D’Ercole F, Arora H, Kumar PA. Paravertebral block for thoracic surgery. J Cardiothorac Vasc Anesth. 2018;32(2):915–27.

    Article  PubMed  Google Scholar 

  106. Schnabel A, Reichl SU, Kranke P, Pogatzki-Zahn EM, Zahn PK. Efficacy and safety of paravertebral blocks in breast surgery: a meta-analysis of randomized controlled trials. Br J Anaesth. 2010;105(6):842–52.

    Article  CAS  PubMed  Google Scholar 

  107. Baeriswyl M, Kirkham KR, Kern C, Albrecht E. The analgesic efficacy of ultrasound-guided transversus abdominis plane block in adult patients: a meta-analysis. Anesth Analg. 2015;121(6):1640–54.

    Article  PubMed  Google Scholar 

  108. Chin KJ, McDonnell JG, Carvalho B, Sharkey A, Pawa A, Gadsden J. Essentials of our current understanding: abdominal wall blocks. Reg Anesth Pain Med. 2017;42(2):133–83.

    Article  PubMed  Google Scholar 

  109. Woodworth GE, Ivie RMJ, Nelson SM, Walker CM, Maniker RB. Perioperative breast analgesia: a qualitative review of anatomy and regional techniques. Reg Anesth Pain Med. 2017;42(5):609–31.

    Article  PubMed  Google Scholar 

  110. Elsharkawy H, El-Boghdadly K, Barrington M. Quadratus lumborum block: anatomical concepts, mechanisms, and techniques. Anesthesiology. 2019;130(2):322–35.

    Article  PubMed  Google Scholar 

  111. Aloia TA, Kim BJ, Segraves-Chun YS, Cata JP, Truty MJ, Shi Q, et al. A randomized controlled trial of postoperative thoracic epidural analgesia versus intravenous patient-controlled analgesia after major hepatopancreatobiliary surgery. Ann Surg. 2017;266(3):545–54.

    Article  PubMed  Google Scholar 

  112. Manion SC, Brennan TJ. Thoracic epidural analgesia and acute pain management. Anesthesiology. 2011;115(1):181–8.

    Article  PubMed  Google Scholar 

  113. Bialka S, Copik M, Daszkiewicz A, Rivas E, Ruetzler K, Szarpak L, et al. Comparison of different methods of postoperative analgesia after thoracotomy-a randomized controlled trial. J Thorac Dis. 2018;10(8):4874–82.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cummings KC III, Zimmerman NM, Maheshwari K, Cooper GS, Cummings LC. Epidural compared with non-epidural analgesia and cardiopulmonary complications after colectomy: a retrospective cohort study of 20,880 patients using a national quality database. J Clin Anesth. 2018;47:12–8.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Joliat GR, Labgaa I, Petermann D, Hubner M, Griesser AC, Demartines N, et al. Cost-benefit analysis of an enhanced recovery protocol for pancreaticoduodenectomy. Br J Surg. 2015;102(13):1676–83.

    Article  PubMed  Google Scholar 

  116. Jouve P, Bazin JE, Petit A, Minville V, Gerard A, Buc E, et al. Epidural versus continuous preperitoneal analgesia during fast-track open colorectal surgery: a randomized controlled trial. Anesthesiology. 2013;118(3):622–30.

    Article  PubMed  Google Scholar 

  117. Lee GC, Fong ZV, Ferrone CR, Thayer SP, Warshaw AL, Lillemoe KD, et al. High performing whipple patients: factors associated with short length of stay after open pancreaticoduodenectomy. J Gastrointest Surg. 2014;18(10):1760–9.

    Article  PubMed  Google Scholar 

  118. Liu SS, Wu CL. Effect of postoperative analgesia on major postoperative complications: a systematic update of the evidence. Anesth Analg. 2007;104(3):689–702.

    Article  CAS  PubMed  Google Scholar 

  119. Kooij FO, Schlack WS, Preckel B, Hollmann MW. Does regional analgesia for major surgery improve outcome? Focus on epidural analgesia. Anesth Analg. 2014;119(3):740–4.

    Article  PubMed  Google Scholar 

  120. Popping DM, Elia N, Van Aken HK, Marret E, Schug SA, Kranke P, et al. Impact of epidural analgesia on mortality and morbidity after surgery: systematic review and meta-analysis of randomized controlled trials. Ann Surg. 2014;259(6):1056–67.

    Article  PubMed  Google Scholar 

  121. Giebler RM, Scherer RU, Peters J. Incidence of neurologic complications related to thoracic epidural catheterization. Anesthesiology. 1997;86(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  122. Rosero EB, Joshi GP. Nationwide incidence of serious complications of epidural analgesia in the United States. Acta Anaesthesiol Scand. 2016;60(6):810–20.

    Article  CAS  PubMed  Google Scholar 

  123. Kranke P, Jokinen J, Pace NL, Schnabel A, Hollmann MW, Hahnenkamp K, et al. Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery. Cochrane Database Syst Rev. 2015;(7):CD009642.

    Google Scholar 

  124. Dunn LK, Durieux ME. Perioperative use of intravenous lidocaine. Anesthesiology. 2017;126(4):729–37.

    Article  PubMed  Google Scholar 

  125. Terkawi AS, Tsang S, Kazemi A, Morton S, Luo R, Sanders DT, et al. A clinical comparison of intravenous and epidural local anesthetic for major abdominal surgery. Reg Anesth Pain Med. 2016;41(1):28–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Swenson BR, Gottschalk A, Wells LT, Rowlingson JC, Thompson PW, Barclay M, et al. Intravenous lidocaine is as effective as epidural bupivacaine in reducing ileus duration, hospital stay, and pain after open colon resection: a randomized clinical trial. Reg Anesth Pain Med. 2010;35(4):370–6.

    Article  CAS  PubMed  Google Scholar 

  127. Wongyingsinn M, Baldini G, Charlebois P, Liberman S, Stein B, Carli F. Intravenous lidocaine versus thoracic epidural analgesia: a randomized controlled trial in patients undergoing laparoscopic colorectal surgery using an enhanced recovery program. Reg Anesth Pain Med. 2011;36(3):241–8.

    Article  CAS  PubMed  Google Scholar 

  128. Weibel S, Jelting Y, Pace NL, Helf A, Eberhart LH, Hahnenkamp K, et al. Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery in adults. Cochrane Database Syst Rev. 2018;(6):CD009642.

    Google Scholar 

  129. Hollmann MW, Durieux ME. Local anesthetics and the inflammatory response: a new therapeutic indication? Anesthesiology. 2000;93(3):858–75.

    Article  CAS  PubMed  Google Scholar 

  130. Denson Donald D, Myers Jane A, Hartrick Craig T, Pither Charles P, Coyle Dennis E, Raj PP. The relationship between free bupivacaine concentration and central nervous system toxicity. Anesthesiology: J Am Soc Anesthesiol. 1984;61(3):A211–A.

    Article  Google Scholar 

  131. Neal JM, Barrington MJ, Fettiplace MR, Gitman M, Memtsoudis SG, Morwald EE, et al. The third American society of regional anesthesia and pain medicine practice advisory on local anesthetic systemic toxicity: executive summary 2017. Reg Anesth Pain Med. 2018;43(2):113–23.

    Article  PubMed  Google Scholar 

  132. Gitman M, Barrington MJ. Local anesthetic systemic toxicity: a review of recent case reports and registries. Reg Anesth Pain Med. 2018;43(2):124–30.

    PubMed  Google Scholar 

  133. Straube S, Derry S, Moore RA, Wiffen PJ, McQuay HJ. Single dose oral gabapentin for established acute postoperative pain in adults. Cochrane Database Syst Rev. 2010;(5):CD008183.

    Google Scholar 

  134. Dirks J, Fredensborg BB, Christensen D, Fomsgaard JS, Flyger H, Dahl JB. A randomized study of the effects of single-dose gabapentin versus placebo on postoperative pain and morphine consumption after mastectomy. Anesthesiology. 2002;97(3):560–4.

    Article  CAS  PubMed  Google Scholar 

  135. Rorarius MG, Mennander S, Suominen P, Rintala S, Puura A, Pirhonen R, et al. Gabapentin for the prevention of postoperative pain after vaginal hysterectomy. Pain. 2004;110(1-2):175–81.

    Article  CAS  PubMed  Google Scholar 

  136. Fabritius ML, Geisler A, Petersen PL, Nikolajsen L, Hansen MS, Kontinen V, et al. Gabapentin for post-operative pain management – a systematic review with meta-analyses and trial sequential analyses. Acta Anaesthesiol Scand. 2016;60(9):1188–208.

    Article  CAS  PubMed  Google Scholar 

  137. Eipe N, Penning J, Yazdi F, Mallick R, Turner L, Ahmadzai N, et al. Perioperative use of pregabalin for acute pain-a systematic review and meta-analysis. Pain. 2015;156(7):1284–300.

    Article  PubMed  Google Scholar 

  138. Clarke H, Bonin RP, Orser BA, Englesakis M, Wijeysundera DN, Katz J. The prevention of chronic postsurgical pain using gabapentin and pregabalin: a combined systematic review and meta-analysis. Anesth Analg. 2012;115(2):428–42.

    Article  CAS  PubMed  Google Scholar 

  139. Schmidt PC, Ruchelli G, Mackey SC, Carroll IR. Perioperative gabapentinoids: choice of agent, dose, timing, and effects on chronic postsurgical pain. Anesthesiology. 2013;119(5):1215–21.

    Article  PubMed  Google Scholar 

  140. Siddiqui NT, Yousefzadeh A, Yousuf M, Kumar D, Choudhry FK, Friedman Z. The effect of gabapentin on delayed discharge from the postanesthesia care unit: a retrospective analysis. Pain Pract. 2018;18(1):18–22.

    Article  PubMed  Google Scholar 

  141. Jokela R, Ahonen J, Tallgren M, Haanpaa M, Korttila K. A randomized controlled trial of perioperative administration of pregabalin for pain after laparoscopic hysterectomy. Pain. 2008;134(1–2):106–12.

    Article  CAS  PubMed  Google Scholar 

  142. Cavalcante AN, Sprung J, Schroeder DR, Weingarten TN. Multimodal analgesic therapy with gabapentin and its association with postoperative respiratory depression. Anesth Analg. 2017;125(1):141–6.

    Article  CAS  PubMed  Google Scholar 

  143. Weingarten TN, Jacob AK, Njathi CW, Wilson GA, Sprung J. Multimodal analgesic protocol and postanesthesia respiratory depression during phase I recovery after total joint arthroplasty. Reg Anesth Pain Med. 2015;40(4):330–6.

    Article  CAS  PubMed  Google Scholar 

  144. Baidya DK, Agarwal A, Khanna P, Arora MK. Pregabalin in acute and chronic pain. J Anaesthesiol Clin Pharmacol. 2011;27(3):307–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Domino EF, Chodoff P, Corssen G. Pharmacologic effects of CI-581, a new dissociative anesthetic, in man. Clin Pharmacol Ther. 1965;6:279–91.

    Article  CAS  PubMed  Google Scholar 

  146. Ferreira RCM, Castor MGM, Piscitelli F, Di Marzo V, Duarte IDG, Romero TRL. The involvement of the endocannabinoid system in the peripheral antinociceptive action of ketamine. J Pain. 2018;19(5):487–95.

    Article  CAS  PubMed  Google Scholar 

  147. Schwenk ES, Viscusi ER, Buvanendran A, Hurley RW, Wasan AD, Narouze S, et al. Consensus guidelines on the use of intravenous ketamine infusions for acute pain management from the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg Anesth Pain Med. 2018;43(5):456–66.

    PubMed  PubMed Central  Google Scholar 

  148. Bell RF, Dahl JB, Moore RA, Kalso E. Peri-operative ketamine for acute post-operative pain: a quantitative and qualitative systematic review (Cochrane review). Acta Anaesthesiol Scand. 2005;49(10):1405–28.

    Article  CAS  PubMed  Google Scholar 

  149. Elia N, Tramer MR. Ketamine and postoperative pain--a quantitative systematic review of randomised trials. Pain. 2005;113(1–2):61–70.

    Article  CAS  PubMed  Google Scholar 

  150. Brinck EC, Tiippana E, Heesen M, Bell RF, Straube S, Moore RA, et al. Perioperative intravenous ketamine for acute postoperative pain in adults. Cochrane Database Syst Rev. 2018;(12):CD012033.

    Google Scholar 

  151. Niesters M, Martini C, Dahan A. Ketamine for chronic pain: risks and benefits. Br J Clin Pharmacol. 2014;77(2):357–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Loftus RW, Yeager MP, Clark JA, Brown JR, Abdu WA, Sengupta DK, et al. Intraoperative ketamine reduces perioperative opiate consumption in opiate-dependent patients with chronic back pain undergoing back surgery. Anesthesiology. 2010;113(3):639–46.

    CAS  PubMed  Google Scholar 

  153. Aveline C, Gautier JF, Vautier P, Cognet F, Hetet HL, Attali JY, et al. Postoperative analgesia and early rehabilitation after total knee replacement: a comparison of continuous low-dose intravenous ketamine versus nefopam. Eur J Pain. 2009;13(6):613–9.

    Article  CAS  PubMed  Google Scholar 

  154. Pendi A, Field R, Farhan SD, Eichler M, Bederman SS. Perioperative ketamine for analgesia in spine surgery: a meta-analysis of randomized controlled trials. Spine. 2018;43(5):E299–e307.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Schmid RL, Sandler AN, Katz J. Use and efficacy of low-dose ketamine in the management of acute postoperative pain: a review of current techniques and outcomes. Pain. 1999;82(2):111–25.

    Article  CAS  PubMed  Google Scholar 

  156. Schwartzman RJ. Response to Drs. Bell and Moore commentary regarding the use of intravenous ketamine for CRPS. Pain. 2010;151(2):554–5; author reply 6-7

    Article  PubMed  Google Scholar 

  157. Schwenk ES, Goldberg SF, Patel RD, Zhou J, Adams DR, Baratta JL, et al. Adverse drug effects and preoperative medication factors related to perioperative low-dose ketamine infusions. Reg Anesth Pain Med. 2016;41(4):482–7.

    Article  CAS  PubMed  Google Scholar 

  158. Coppel DL, Bovill JG, Dundee JW. The taming of ketamine. Anaesthesia. 1973;28(3):293–6.

    Article  CAS  PubMed  Google Scholar 

  159. Hawksworth C, Serpell M. Intrathecal anesthesia with ketamine. Reg Anesth Pain Med. 1998;23(3):283–8.

    CAS  PubMed  Google Scholar 

  160. Wong CS, Liaw WJ, Tung CS, Su YF, Ho ST. Ketamine potentiates analgesic effect of morphine in postoperative epidural pain control. Reg Anesth. 1996;21(6):534–41.

    CAS  PubMed  Google Scholar 

  161. Anis NA, Berry SC, Burton NR, Lodge D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol. 1983;79(2):565–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Domino EF. Taming the ketamine tiger. 1965. Anesthesiology. 2010;113(3):678–84.

    PubMed  Google Scholar 

  163. Kalsi SS, Wood DM, Dargan PI. The epidemiology and patterns of acute and chronic toxicity associated with recreational ketamine use. Emerg Health Threats J. 2011;4:7107.

    Article  PubMed  Google Scholar 

  164. Maze M, Tranquilli W. Alpha-2 adrenoceptor agonists: defining the role in clinical anesthesia. Anesthesiology. 1991;74(3):581–605.

    Article  CAS  PubMed  Google Scholar 

  165. Hayashi Y, Maze M. Alpha 2 adrenoceptor agonists and anaesthesia. Br J Anaesth. 1993;71(1):108–18.

    Article  CAS  PubMed  Google Scholar 

  166. Blaudszun G, Lysakowski C, Elia N, Tramer MR. Effect of perioperative systemic alpha2 agonists on postoperative morphine consumption and pain intensity: systematic review and meta-analysis of randomized controlled trials. Anesthesiology. 2012;116(6):1312–22.

    Article  CAS  PubMed  Google Scholar 

  167. Jessen Lundorf L, Korvenius Nedergaard H, Moller AM. Perioperative dexmedetomidine for acute pain after abdominal surgery in adults. Cochrane Database Syst Rev. 2016;(2):CD010358.

    Google Scholar 

  168. Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93(2):382–94.

    Article  CAS  PubMed  Google Scholar 

  169. Gandhi KA, Panda NB, Vellaichamy A, Mathew PJ, Sahni N, Batra YK. Intraoperative and postoperative administration of dexmedetomidine reduces anesthetic and postoperative analgesic requirements in patients undergoing cervical spine surgeries. J Neurosurg Anesthesiol. 2017;29(3):258–63.

    Article  PubMed  Google Scholar 

  170. Hidalgo MP, Auzani JA, Rumpel LC, Moreira NL Jr, Cursino AW, Caumo W. The clinical effect of small oral clonidine doses on perioperative outcomes in patients undergoing abdominal hysterectomy. Anesth Analg. 2005;100(3):795–802, table of contents

    Article  CAS  PubMed  Google Scholar 

  171. Chen K, Lu Z, Xin YC, Cai Y, Chen Y, Pan SM. Alpha-2 agonists for long-term sedation during mechanical ventilation in critically ill patients. Cochrane Database Syst Rev. 2015;(1):CD010269.

    Google Scholar 

  172. Shukry M, Clyde MC, Kalarickal PL, Ramadhyani U. Does dexmedetomidine prevent emergence delirium in children after sevoflurane-based general anesthesia? Paediatr Anaesth. 2005;15(12):1098–104.

    Article  PubMed  Google Scholar 

  173. Li Y, Wang B, Zhang LL, He SF, Hu XW, Wong GT, et al. Dexmedetomidine combined with general anesthesia provides similar intraoperative stress response reduction when compared with a combined general and epidural anesthetic technique. Anesth Analg. 2016;122(4):1202–10.

    Article  CAS  PubMed  Google Scholar 

  174. Nguyen V, Tiemann D, Park E, Salehi A. Alpha-2 agonists. Anesthesiol Clin. 2017;35(2):233–45.

    Article  PubMed  Google Scholar 

  175. Precedex prescribing information: Food and Drug Administration; 2013. Updated 06/2013. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/021038s021lbl.pdf.

  176. Clonidine prescribing information: Food and Drug Administration; 2010. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/020615s003lbl.pdf.

  177. Brummett CM, Williams BA. Additives to local anesthetics for peripheral nerve blockade. Int Anesthesiol Clin. 2011;49(4):104–16.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Hall JE, Uhrich TD, Barney JA, Arain SR, Ebert TJ. Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg. 2000;90(3):699–705.

    Article  CAS  PubMed  Google Scholar 

  179. Peng K, Liu HY, Wu SR, Cheng H, Ji FH. Effects of combining dexmedetomidine and opioids for postoperative intravenous patient-controlled analgesia: a systematic review and meta-analysis. Clin J Pain. 2015;31(12):1097–104.

    Article  PubMed  Google Scholar 

  180. Yuen VM, Irwin MG, Hui TW, Yuen MK, Lee LH. A double-blind, crossover assessment of the sedative and analgesic effects of intranasal dexmedetomidine. Anesth Analg. 2007;105(2):374–80.

    Article  CAS  PubMed  Google Scholar 

  181. Abdallah FW, Brull R. Facilitatory effects of perineural dexmedetomidine on neuraxial and peripheral nerve block: a systematic review and meta-analysis. Br J Anaesth. 2013;110(6):915–25.

    Article  CAS  PubMed  Google Scholar 

  182. Buerkle H, Yaksh TL. Pharmacological evidence for different alpha 2-adrenergic receptor sites mediating analgesia and sedation in the rat. Br J Anaesth. 1998;81(2):208–15.

    Article  CAS  PubMed  Google Scholar 

  183. Giovannitti JA Jr, Thoms SM, Crawford JJ. Alpha-2 adrenergic receptor agonists: a review of current clinical applications. Anesth Prog. 2015;62(1):31–9.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Carollo DS, Nossaman BD, Ramadhyani U. Dexmedetomidine: a review of clinical applications. Curr Opin Anaesthesiol. 2008;21(4):457–61.

    Article  PubMed  Google Scholar 

  185. Yaksh TL. Pharmacology of spinal adrenergic systems which modulate spinal nociceptive processing. Pharmacol Biochem Behav. 1985;22(5):845–58.

    Article  CAS  PubMed  Google Scholar 

  186. Venn RM, Karol MD, Grounds RM. Pharmacokinetics of dexmedetomidine infusions for sedation of postoperative patients requiring intensive care. Br J Anaesth. 2002;88(5):669–75.

    Article  CAS  PubMed  Google Scholar 

  187. Kharasch ED, Brunt LM. Perioperative opioids and public health. Anesthesiology. 2016;124(4):960–5.

    Article  PubMed  Google Scholar 

  188. Quigley C, Wiffen P. A systematic review of hydromorphone in acute and chronic pain. J Pain Symptom Manage. 2003;25(2):169–78.

    Article  CAS  PubMed  Google Scholar 

  189. Fukuda K. Opioids. Miller’s anesthesia. Philadelphia: Elsevier; 2010. p. 769–824.

    Book  Google Scholar 

  190. Hayhurst CJ, Durieux ME. Differential opioid tolerance and opioid-induced hyperalgesia: a clinical reality. Anesthesiology. 2016;124(2):483–8.

    Article  PubMed  Google Scholar 

  191. Fletcher D, Martinez V. Opioid-induced hyperalgesia in patients after surgery: a systematic review and a meta-analysis. Br J Anaesth. 2014;112(6):991–1004.

    Article  CAS  PubMed  Google Scholar 

  192. Kaiko RF, Wallenstein SL, Rogers AG, Grabinski PY, Houde RW. Analgesic and mood effects of heroin and morphine in cancer patients with postoperative pain. N Engl J Med. 1981;304(25):1501–5.

    Article  CAS  PubMed  Google Scholar 

  193. Yaster M, Benzon HT, Anderson TA. “Houston, We Have a Problem!”: the role of the anesthesiologist in the current opioid epidemic. Anesth Analg. 2017;125(5):1429–31.

    Article  PubMed  Google Scholar 

  194. Hanna M. Systemic analgesics: opioids. In: Benzon H, Rathmell JP, Wu CL, Turk DC, Argoff CE, Hurley RW, editors. Practical management of pain. Philadelphia: Elsevier; 2014.

    Google Scholar 

  195. Momeni M, Crucitti M, De Kock M. Patient-controlled analgesia in the management of postoperative pain. Drugs. 2006;66(18):2321–37.

    Article  CAS  PubMed  Google Scholar 

  196. Stoelting RK. Acute postoperative pain management. Basics of anesthesia. Philadelphia: Elsevier; 2007.

    Google Scholar 

  197. Macintyre PE, Jarvis DA. Age is the best predictor of postoperative morphine requirements. Pain. 1996;64(2):357–64.

    Article  CAS  PubMed  Google Scholar 

  198. Jage J, Bey T. Postoperative analgesia in patients with substance use disorders: part I. Acute Pain. 2000;3(3):29–44.

    Article  Google Scholar 

  199. Mitra S, Sinatra RS. Perioperative management of acute pain in the opioid-dependent patient. Anesthesiology. 2004;101(1):212–27.

    Article  PubMed  Google Scholar 

  200. VanDercar DH, Martinez AP, De Lisser EA. Sleep apnea syndromes: a potential contraindication for patient-controlled analgesia. Anesthesiology. 1991;74(3):623–4.

    Article  CAS  PubMed  Google Scholar 

  201. Atcheson R, Lambert DG. Update on opioid receptors. Br J Anaesth. 1994;73(2):132–4.

    Article  CAS  PubMed  Google Scholar 

  202. Pathan H, Williams J. Basic opioid pharmacology: an update. Br J Pain. 2012;6(1):11–6.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Villemagne PS, Dannals RF, Ravert HT, Frost JJ. PET imaging of human cardiac opioid receptors. Eur J Nucl Med Mol Imaging. 2002;29(10):1385–8.

    Article  CAS  PubMed  Google Scholar 

  204. Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y. Current research on opioid receptor function. Curr Drug Targets. 2012;13(2):230–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Vallejo R, de Leon-Casasola O, Benyamin R. Opioid therapy and immunosuppression: a review. Am J Ther. 2004;11(5):354–65.

    Article  PubMed  Google Scholar 

  206. Romberg R, Sarton E, Teppema L, Matthes HW, Kieffer BL, Dahan A. Comparison of morphine-6-glucuronide and morphine on respiratory depressant and antinociceptive responses in wild type and mu-opioid receptor deficient mice. Br J Anaesth. 2003;91(6):862–70.

    Article  CAS  PubMed  Google Scholar 

  207. Kojima Y, Takahashi T, Fujina M, Owyang C. Inhibition of cholinergic transmission by opiates in ileal myenteric plexus is mediated by kappa receptor. Involvement of regulatory inhibitory G protein and calcium N-channels. J Pharmacol Exp Ther. 1994;268(2):965–70.

    CAS  PubMed  Google Scholar 

  208. Dahan A, Yassen A, Romberg R, Sarton E, Teppema L, Olofsen E, et al. Buprenorphine induces ceiling in respiratory depression but not in analgesia. Br J Anaesth. 2006;96(5):627–32.

    Article  CAS  PubMed  Google Scholar 

  209. Dahan A, Romberg R, Teppema L, Sarton E, Bijl H, Olofsen E. Simultaneous measurement and integrated analysis of analgesia and respiration after an intravenous morphine infusion. Anesthesiology. 2004;101(5):1201–9.

    Article  CAS  PubMed  Google Scholar 

  210. Colvin LA, Fallon MT. Opioid-induced hyperalgesia: a clinical challenge. Br J Anaesth. 2010;104(2):125–7.

    Article  CAS  PubMed  Google Scholar 

  211. Angst MS, Clark JD. Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology. 2006;104(3):570–87.

    Article  CAS  PubMed  Google Scholar 

  212. Shaw IR, Lavigne G, Mayer P, Choiniere M. Acute intravenous administration of morphine perturbs sleep architecture in healthy pain-free young adults: a preliminary study. Sleep. 2005;28(6):677–82.

    Article  PubMed  Google Scholar 

  213. Bonafide CP, Aucutt-Walter N, Divittore N, King T, Bixler EO, Cronin AJ. Remifentanil inhibits rapid eye movement sleep but not the nocturnal melatonin surge in humans. Anesthesiology. 2008;108(4):627–33.

    Article  CAS  PubMed  Google Scholar 

  214. Weinstein MS, Nicolson SC, Schreiner MS. A single dose of morphine sulfate increases the incidence of vomiting after outpatient inguinal surgery in children. Anesthesiology. 1994;81(3):572–7.

    Article  CAS  PubMed  Google Scholar 

  215. Pechnick RN. Effects of opioids on the hypothalamo-pituitary-adrenal axis. Annu Rev Pharmacol Toxicol. 1993;33:353–82.

    Article  CAS  PubMed  Google Scholar 

  216. Moss J. Identifying and treating opioid side effects: the development of methylnaltrexone. Anesthesiology. 2019;130(1):142–8.

    Article  CAS  PubMed  Google Scholar 

  217. Figueredo E, Garcia-Fuentes EM. Assessment of the efficacy of esmolol on the haemodynamic changes induced by laryngoscopy and tracheal intubation: a meta-analysis. Acta Anaesthesiol Scand. 2001;45(8):1011–22.

    Article  CAS  PubMed  Google Scholar 

  218. Watts R, Thiruvenkatarajan V, Calvert M, Newcombe G, van Wijk RM. The effect of perioperative esmolol on early postoperative pain: a systematic review and meta-analysis. J Anaesthesiol Clin Pharmacol. 2017;33(1):28–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Harkanen L, Halonen J, Selander T, Kokki H. Beta-adrenergic antagonists during general anesthesia reduced postoperative pain: a systematic review and a meta-analysis of randomized controlled trials. J Anesth. 2015;29(6):934–43.

    Article  PubMed  Google Scholar 

  220. Collard V, Mistraletti G, Taqi A, Asenjo JF, Feldman LS, Fried GM, et al. Intraoperative esmolol infusion in the absence of opioids spares postoperative fentanyl in patients undergoing ambulatory laparoscopic cholecystectomy. Anesth Analg. 2007;105(5):1255–62, table of contents

    Article  PubMed  Google Scholar 

  221. Volz-Zang C, Eckrich B, Jahn P, Schneidrowski B, Schulte B, Palm D. Esmolol, an ultrashort-acting, selective beta 1-adrenoceptor antagonist: pharmacodynamic and pharmacokinetic properties. Eur J Clin Pharmacol. 1994;46(5):399–404.

    Article  CAS  PubMed  Google Scholar 

  222. Berne R. The autonomic nervous system and its central control. In: Physiology. St. Louis: Mosby; 2004. p. 206–20.

    Google Scholar 

  223. Ander F, Magnuson A, de Leon A, Ahlstrand R. Does the beta-receptor antagonist esmolol have analgesic effects?: a randomised placebo-controlled cross-over study on healthy volunteers undergoing the cold pressor test. Eur J Anaesthesiol. 2018;35(3):165–72.

    Article  CAS  PubMed  Google Scholar 

  224. Booze RM, Crisostomo EA, Davis JN. Beta-adrenergic receptors in the hippocampal and retrohippocampal regions of rats and guinea pigs: autoradiographic and immunohistochemical studies. Synapse (New York, NY). 1993;13(3):206–14.

    Article  CAS  Google Scholar 

  225. de Bruijn NP, Reves JG, Croughwell N, Clements F, Drissel DA. Pharmacokinetics of esmolol in anesthetized patients receiving chronic beta blocker therapy. Anesthesiology. 1987;66(3):323–6.

    Article  PubMed  Google Scholar 

  226. Sum CY, Yacobi A, Kartzinel R, Stampfli H, Davis CS, Lai CM. Kinetics of esmolol, an ultra-short-acting beta blocker, and of its major metabolite. Clin Pharmacol Ther. 1983;34(4):427–34.

    Article  CAS  PubMed  Google Scholar 

  227. Sintetos AL, Hulse J, Pritchett EL. Pharmacokinetics and pharmacodynamics of esmolol administered as an intravenous bolus. Clin Pharmacol Ther. 1987;41(1):112–7.

    Article  CAS  PubMed  Google Scholar 

  228. Byrd RC, Sung RJ, Marks J, Parmley WW. Safety and efficacy of esmolol (ASL-8052: an ultrashort-acting beta-adrenergic blocking agent) for control of ventricular rate in supraventricular tachycardias. J Am Coll Cardiol. 1984;3(2 Pt 1):394–9.

    Article  CAS  PubMed  Google Scholar 

  229. Yu SK, Tait G, Karkouti K, Wijeysundera D, McCluskey S, Beattie WS. The safety of perioperative esmolol: a systematic review and meta-analysis of randomized controlled trials. Anesth Analg. 2011;112(2):267–81.

    Article  CAS  PubMed  Google Scholar 

  230. Devereaux PJ, Yang H, Yusuf S, Guyatt G, Leslie K, Villar JC, et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet (London, England). 2008;371(9627):1839–47.

    Article  CAS  Google Scholar 

  231. Dunkelgrun M, Boersma E, Schouten O, Koopman-van Gemert AW, van Poorten F, Bax JJ, et al. Bisoprolol and fluvastatin for the reduction of perioperative cardiac mortality and myocardial infarction in intermediate-risk patients undergoing noncardiovascular surgery: a randomized controlled trial (DECREASE-IV). Ann Surg. 2009;249(6):921–6.

    Article  PubMed  Google Scholar 

  232. Brady AR, Gibbs JS, Greenhalgh RM, Powell JT, Sydes MR. Perioperative beta-blockade (POBBLE) for patients undergoing infrarenal vascular surgery: results of a randomized double-blind controlled trial. J Vasc Surg. 2005;41(4):602–9.

    Article  CAS  PubMed  Google Scholar 

  233. Juul AB, Wetterslev J, Gluud C, Kofoed-Enevoldsen A, Jensen G, Callesen T, et al. Effect of perioperative beta blockade in patients with diabetes undergoing major non-cardiac surgery: randomised placebo controlled, blinded multicentre trial. BMJ (Clinical research ed). 2006;332(7556):1482.

    Article  Google Scholar 

  234. Yang H, Raymer K, Butler R, Parlow J, Roberts R. The effects of perioperative beta-blockade: results of the Metoprolol after Vascular Surgery (MaVS) study, a randomized controlled trial. Am Heart J. 2006;152(5):983–90.

    Article  CAS  PubMed  Google Scholar 

  235. Wijeysundera DN, Duncan D, Nkonde-Price C, Virani SS, Washam JB, Fleischmann KE, et al. Perioperative beta blockade in noncardiac surgery: a systematic review for the 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;130(24):2246–64.

    Article  CAS  PubMed  Google Scholar 

  236. Naidu R, Flood P. Magnesium: is there a signal in the noise? Anesthesiology. 2013;119(1):13–5.

    Article  PubMed  Google Scholar 

  237. Lysakowski C, Dumont L, Czarnetzki C, Tramer MR. Magnesium as an adjuvant to postoperative analgesia: a systematic review of randomized trials. Anesth Analg. 2007;104(6):1532–9, table of contents.

    Article  CAS  PubMed  Google Scholar 

  238. De Oliveira GS Jr, Castro-Alves LJ, Khan JH, McCarthy RJ. Perioperative systemic magnesium to minimize postoperative pain: a meta-analysis of randomized controlled trials. Anesthesiology. 2013;119(1):178–90.

    Article  PubMed  CAS  Google Scholar 

  239. Albrecht E, Kirkham KR, Liu SS, Brull R. Peri-operative intravenous administration of magnesium sulphate and postoperative pain: a meta-analysis. Anaesthesia. 2013;68(1):79–90.

    Article  CAS  PubMed  Google Scholar 

  240. Hidalgo DA, Pusic AL. The role of methocarbamol and intercostal nerve blocks for pain management in breast augmentation. Aesthet Surg J. 2005;25(6):571–5.

    Article  CAS  PubMed  Google Scholar 

  241. Chin KJ, Lewis S. Opioid-free analgesia for posterior spinal fusion surgery using erector spinae plane (ESP) blocks in a multimodal anesthetic regimen. Spine. 2019;44(6):E379–e83.

    Article  PubMed  Google Scholar 

  242. de Santana ST, Calazans AC, Martins-Filho PR, Silva LC, de Oliveira ESED, Gomes AC. Evaluation of the muscle relaxant cyclobenzaprine after third-molar extraction. J Am Dent Assoc (1939). 2011;142(10):1154–62.

    Article  Google Scholar 

  243. Viguier F, Michot B, Hamon M, Bourgoin S. Multiple roles of serotonin in pain control mechanisms--implications of 5-HT(7) and other 5-HT receptor types. Eur J Pharmacol. 2013;716(1–3):8–16.

    Article  CAS  PubMed  Google Scholar 

  244. Wong K, Phelan R, Kalso E, Galvin I, Goldstein D, Raja S, et al. Antidepressant drugs for prevention of acute and chronic postsurgical pain: early evidence and recommended future directions. Anesthesiology. 2014;121(3):591–608.

    Article  CAS  PubMed  Google Scholar 

  245. Lunn TH, Frokjaer VG, Hansen TB, Kristensen PW, Lind T, Kehlet H. Analgesic effect of perioperative escitalopram in high pain catastrophizing patients after total knee arthroplasty: a randomized, double-blind, placebo-controlled trial. Anesthesiology. 2015;122(4):884–94.

    Article  CAS  PubMed  Google Scholar 

  246. Bjordal JM, Johnson MI, Ljunggreen AE. Transcutaneous electrical nerve stimulation (TENS) can reduce postoperative analgesic consumption. A meta-analysis with assessment of optimal treatment parameters for postoperative pain. Eur J Pain. 2003;7(2):181–8.

    Article  PubMed  Google Scholar 

  247. Tsivian M, Qi P, Kimura M, Chen VH, Chen SH, Gan TJ, et al. The effect of noise-cancelling headphones or music on pain perception and anxiety in men undergoing transrectal prostate biopsy. Urology. 2012;79(1):32–6.

    Article  PubMed  Google Scholar 

  248. Koch ME, Kain ZN, Ayoub C, Rosenbaum SH. The sedative and analgesic sparing effect of music. Anesthesiology. 1998;89(2):300–6.

    Article  CAS  PubMed  Google Scholar 

  249. Gold JI, Belmont KA, Thomas DA. The neurobiology of virtual reality pain attenuation. Cyberpsychol Behav. 2007;10(4):536–44.

    Article  PubMed  Google Scholar 

  250. Hoffman HG, Richards TL, Van Oostrom T, Coda BA, Jensen MP, Blough DK, et al. The analgesic effects of opioids and immersive virtual reality distraction: evidence from subjective and functional brain imaging assessments. Anesth Analg. 2007;105(6):1776–83, table of contents.

    Article  CAS  PubMed  Google Scholar 

  251. Carrougher GJ, Hoffman HG, Nakamura D, Lezotte D, Soltani M, Leahy L, et al. The effect of virtual reality on pain and range of motion in adults with burn injuries. J Burn Care Res. 2009;30(5):785–91.

    Article  PubMed  Google Scholar 

  252. Furman E, Jasinevicius TR, Bissada NF, Victoroff KZ, Skillicorn R, Buchner M. Virtual reality distraction for pain control during periodontal scaling and root planing procedures. J Am Dent Assoc (1939). 2009;140(12):1508–16.

    Article  Google Scholar 

  253. Tashjian VC, Mosadeghi S, Howard AR, Lopez M, Dupuy T, Reid M, et al. Virtual reality for management of pain in hospitalized patients: results of a controlled trial. JMIR Ment Health. 2017;4(1):e9.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Lo WLA, Lei D, Li L, Huang DF, Tong KF. The perceived benefits of an artificial intelligence-embedded mobile app implementing evidence-based guidelines for the self-management of chronic neck and back pain: observational study. JMIR Mhealth Uhealth. 2018;6(11):e198.

    Article  PubMed  PubMed Central  Google Scholar 

  255. Parthipan A, Banerjee I, Humphreys K, Asch SM, Curtin C, Carroll I, et al. Predicting inadequate postoperative pain management in depressed patients: a machine learning approach. PLoS One. 2019;14(2):e0210575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Tighe PJ, Harle CA, Hurley RW, Aytug H, Boezaart AP, Fillingim RB. Teaching a machine to feel postoperative pain: combining high-dimensional clinical data with machine learning algorithms to forecast acute postoperative pain. Pain Med. 2015;16(7):1386–401.

    Article  PubMed  Google Scholar 

  257. Lotsch J, Ultsch A. Machine learning in pain research. Pain. 2018;159(4):623–30.

    Article  PubMed  Google Scholar 

  258. Deer TR, Mekhail N, Provenzano D, Pope J, Krames E, Leong M, et al. The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the Neuromodulation Appropriateness Consensus Committee. Neuromodulation. 2014;17(6):515–50; discussion 50

    Article  PubMed  Google Scholar 

  259. Ilfeld BM, Finneran JJt, Gabriel RA, Said ET, Nguyen PL, Abramson WB, et al. Ultrasound-guided percutaneous peripheral nerve stimulation: neuromodulation of the suprascapular nerve and brachial plexus for postoperative analgesia following ambulatory rotator cuff repair. A proof-of-concept study. Reg Anesth Pain Med. 2019;44:310–18.

    Article  PubMed  Google Scholar 

  260. Ilfeld BM, Gilmore CA, Grant SA, Bolognesi MP, Del Gaizo DJ, Wongsarnpigoon A, et al. Ultrasound-guided percutaneous peripheral nerve stimulation for analgesia following total knee arthroplasty: a prospective feasibility study. J Orthop Surg Res. 2017;12(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Ilfeld BM, Gabriel RA, Said ET, Monahan AM, Sztain JF, Abramson WB, et al. Ultrasound-guided percutaneous peripheral nerve stimulation: neuromodulation of the sciatic nerve for postoperative analgesia following ambulatory foot surgery, a proof-of-concept study. Reg Anesth Pain Med. 2018;43(6):580–9.

    Article  PubMed  PubMed Central  Google Scholar 

  262. Pena C. U.S. Food & Drug Administration; 2018. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf17/K173763.pdf.

  263. Ilfeld BM, Preciado J, Trescot AM. Novel cryoneurolysis device for the treatment of sensory and motor peripheral nerves. Expert Rev Med Devices. 2016;13(8):713–25.

    Article  CAS  PubMed  Google Scholar 

  264. Ilfeld BM, Gabriel RA, Trescot AM. Ultrasound-guided percutaneous cryoneurolysis for treatment of acute pain: could cryoanalgesia replace continuous peripheral nerve blocks? Br J Anaesth. 2017;119(4):703–6.

    Article  CAS  PubMed  Google Scholar 

  265. Schneider S, Provasi D, Filizola M. How oliceridine (TRV-130) binds and stabilizes a mu-opioid receptor conformational state that selectively triggers g protein signaling pathways. Biochemistry. 2016;55(46):6456–66.

    Article  CAS  PubMed  Google Scholar 

  266. Singla N, Minkowitz HS, Soergel DG, Burt DA, Subach RA, Salamea MY, et al. A randomized, Phase IIb study investigating oliceridine (TRV130), a novel micro-receptor G-protein pathway selective (mu-GPS) modulator, for the management of moderate to severe acute pain following abdominoplasty. J Pain Res. 2017;10:2413–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Viscusi ER, Skobieranda F, Soergel DG, Cook E, Burt DA, Singla N. APOLLO-1: a randomized placebo and active-controlled phase III study investigating oliceridine (TRV130), a G protein-biased ligand at the micro-opioid receptor, for management of moderate-to-severe acute pain following bunionectomy. J Pain Res. 2019;12:927–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Lahaye LA, Butterworth JF. Site-1 sodium channel blockers as local anesthetics: will neosaxitoxin supplant the need for continuous nerve blocks? Anesthesiology. 2015;123(4):741–2.

    Article  PubMed  Google Scholar 

  269. Rodriguez-Navarro AJ, Berde CB, Wiedmaier G, Mercado A, Garcia C, Iglesias V, et al. Comparison of neosaxitoxin versus bupivacaine via port infiltration for postoperative analgesia following laparoscopic cholecystectomy: a randomized, double-blind trial. Reg Anesth Pain Med. 2011;36(2):103–9.

    Article  CAS  PubMed  Google Scholar 

  270. Lobo K, Donado C, Cornelissen L, Kim J, Ortiz R, Peake RW, et al. A phase 1, dose-escalation, double-blind, block-randomized, controlled trial of safety and efficacy of neosaxitoxin alone and in combination with 0.2% bupivacaine, with and without epinephrine, for cutaneous anesthesia. Anesthesiology. 2015;123(4):873–85.

    Article  CAS  PubMed  Google Scholar 

  271. Lavand’homme P, Estebe JP. Opioid-free anesthesia: a different regard to anesthesia practice. Curr Opin Anaesthesiol. 2018;31(5):556–61.

    Article  PubMed  Google Scholar 

  272. Boysen PG 2nd, Pappas MM, Evans B. An evidence-based opioid-free anesthetic technique to manage perioperative and periprocedural pain. Ochsner J. 2018;18(2):121–5.

    Article  PubMed  PubMed Central  Google Scholar 

  273. Frauenknecht J, Kirkham KR, Jacot-Guillarmod A, Albrecht E. Analgesic impact of intra-operative opioids vs. opioid-free anaesthesia: a systematic review and meta-analysis. Anaesthesia. 2019;74(5):651–62.

    Article  CAS  PubMed  Google Scholar 

  274. Elkassabany NM, Mariano ER. Opioid-free anaesthesia – what would Inigo Montoya say? Anaesthesia. 2019;74(5):560–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony T. Machi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Machi, A.T. (2020). Perioperative Pain Management. In: Noe, C. (eds) Pain Management for Clinicians. Springer, Cham. https://doi.org/10.1007/978-3-030-39982-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39982-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39981-8

  • Online ISBN: 978-3-030-39982-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics