Skip to main content

Fracture Behavior of WMA Concretes

  • Chapter
  • First Online:
Fracture Behavior of Asphalt Materials

Part of the book series: Structural Integrity ((STIN,volume 14))

  • 302 Accesses

Abstract

This chapter deals with the fracture behavior of warm mix asphalt (WMA) concretes. The effects of different parameters including mode of loading (i.e., pure mode I, pure mode II, and mixed mode I/II), temperature, crumb rubber, fiber (e.g., jute, kenaf, etc.), and aggregate type on fracture resistance of WMA mixtures are reviewed. Although WMA concretes are prepared at temperatures 20–55 °C lower than HMA concretes, fracture toughness of WMA is as high as that of HMA, and even some additives used in WMA mixtures provide higher fracture toughness as compared with HMA mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hill B, Behnia B, Hakimzadeh S, Buttlar WG, Reis H (2012) Evaluation of low-temperature cracking performance of warm-mix asphalt mixtures. Transp Res Rec 2294(1):81–88

    Article  Google Scholar 

  2. Frigio F, Raschia S, Steiner D, Hofko B, Canestrari F (2016) Aging effects on recycled WMA porous asphalt mixtures. Constr Build Mater 123:712–718

    Article  Google Scholar 

  3. Hasan MRM, You Z, Porter D, Goh SW (2015) Laboratory moisture susceptibility evaluation of WMA under possible field conditions. Constr Build Mater 101:57–64

    Article  Google Scholar 

  4. Tafti MF, Khabiri MM, Sanij HK (2016) Experimental investigation of the effect of using different aggregate types on WMA mixtures. Int J Pavement Res Technol 9(5):376–386

    Article  Google Scholar 

  5. Su K, Maekawa R, Hachiya Y (2009) Laboratory evaluation of WMA mixture for use in airport pavement rehabilitation. Constr Build Mater 23(7):2709–2714

    Article  Google Scholar 

  6. Fakhri M, Ghanizadeh AR, Omrani H (2013) Comparison of fatigue resistance of HMA and WMA mixtures modified by SBS. Procedia-Soc Behav Sci 104:168–177

    Article  Google Scholar 

  7. Das PK, Tasdemir Y, Birgisson B (2012) Low temperature cracking performance of WMA with the use of the Superpave indirect tensile test. Constr Build Mater 30:643–649

    Article  Google Scholar 

  8. Razmi A, Mirsayar M (2018) Fracture resistance of asphalt concrete modified with crumb rubber at low temperatures. Int J Pavement Res Technol 11(3):265–273

    Article  Google Scholar 

  9. Mansourian A, Razmi A, Razavi M (2016) Evaluation of fracture resistance of warm mix asphalt containing jute fibers. Constr Build Mater 117:37–46

    Article  Google Scholar 

  10. Pirmohammad S, Khanpour M (2020) Fracture strength of warm mix asphalt (WMA) concretes modified with crumb rubber subjected to variable temperatures. Road Mater Pavement Des (in press)

    Google Scholar 

  11. Hojjati Mengharpey M (2018) Investigating the effect of temperature cycling on fracture behavior of warm mix asphalt (WMA) concretes reinforced with natural fibers under mixed mode I/II loading using a new test specimen, MSc Dissertation, University of Mohaghegh Ardabili

    Google Scholar 

  12. Aliha M, Razmi A, Mansourian A (2017) The influence of natural and synthetic fibers on low temperature mixed mode I + II fracture behavior of warm mix asphalt (WMA) materials. Eng Fract Mech 182:322–336

    Article  Google Scholar 

  13. Erdogan F, Sih G (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85(4):519–525

    Article  Google Scholar 

  14. Braham AF, Buttlar WG, Marasteanu MO (2007) Effect of binder type, aggregate, and mixture composition on fracture energy of hot-mix asphalt in cold climates. Transp Res Rec 2001(1):102–109

    Article  Google Scholar 

  15. Lee SJ, Park J, Hong JP, Kim KW (2013) Fracture resistance of warm mix asphalt concretes at low temperatures

    Google Scholar 

  16. Yeon KS, Kim S, Lee HJ, Kim KW (2014) Low temperature tensile characteristics of warm mix asphalt mixtures. J Test Eval 42(4):903–911

    Article  Google Scholar 

  17. Podolsky JH, Buss A, Williams RC, Cochran E (2016) Comparative performance of bio-derived/chemical additives in warm mix asphalt at low temperature. Mater Struct 49(1–2):563–575

    Article  Google Scholar 

  18. Mashaan NS, Ali AH, Karim MR, Abdelaziz M (2014) A review on using crumb rubber in reinforcement of asphalt pavement. Sci World J 2014

    Google Scholar 

  19. Chen H, Xu Q (2010) Experimental study of fibers in stabilizing and reinforcing asphalt binder. Fuel 89(7):1616–1622

    Article  Google Scholar 

  20. Roque R, Tia M, Ruth BE (1987) Asphalt rheology to define the properties of asphalt concrete mixtures and the performance of pavements. In: Asphalt rheology: relationship to mixture, ASTM International

    Google Scholar 

  21. Fazaeli H, Samin Y, Pirnoun A, Dabiri AS (2016) Laboratory and field evaluation of the warm fiber reinforced high performance asphalt mixtures (case study Karaj-Chaloos Road). Constr Build Mater 122:273–283

    Article  Google Scholar 

  22. Kaloush KE, Biligiri KP, Zeiada WA, Rodezno MC, Reed JX (2010) Evaluation of fiber-reinforced asphalt mixtures using advanced material characterization tests. J Test Eval 38(4):400–411

    Google Scholar 

  23. Pirmohammad S, Hojjati Mengharpey M (2020) Influence of natural fibers on fracture strength of WMA (warm mix asphalt) concretes using a new fracture test specimen. Constr Build Mater (under review)

    Google Scholar 

  24. Pirmohammad S, Hojjati Mengharpey M (2018) A new mixed mode I/II fracture test specimen: numerical and experimental studies. Theor Appl Fract Mech 97:204–214

    Article  Google Scholar 

  25. Hurley GC, Prowell BD (2005) Evaluation of Sasobit for use in warm mix asphalt, NCAT report 5(06)

    Google Scholar 

  26. Yoo MY, Jeong SH, Park JY, Kim NH, Kim KW (2011) Low-temperature fracture characteristics of selected warm-mix asphalt concretes. Transp Res Rec 2208(1):40–47

    Article  Google Scholar 

  27. Singh D, Chitragar SF, Ashish PK (2017) Comparison of moisture and fracture damage resistance of hot and warm asphalt mixes containing reclaimed pavement materials. Constr Build Mater 157:1145–1153

    Article  Google Scholar 

  28. Pirmohammad S, Yousefi A, Sobhi S, Vaseghi Z (2020) Fracture strength of warm mix asphalt (WMA) concretes containing reclaimed asphalt pavement (RAP). J Cent South Univ (under review)

    Google Scholar 

  29. Pirmohammad S (2020) Study on the effect of rejuvenation agent on the fracture behavior of warm mix asphalt (WMA) mixtures containing reclaimed asphalt pavement (RAP), University of Mohaghegh Ardabili, Research Report No. 26106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadjad Pirmohammad .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pirmohammad, S., Ayatollahi, M. (2020). Fracture Behavior of WMA Concretes. In: Fracture Behavior of Asphalt Materials. Structural Integrity, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-39974-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39974-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39973-3

  • Online ISBN: 978-3-030-39974-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics