Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications, Numerical Insights, vol. 6. CRC Press, Chapman & Hall (2009)
MATH
CrossRef
Google Scholar
Angeline, P.J., Pollack, J.: Evolutionary module acquisition. In: Proceedings of the Second Annual Conference on Evolutionary Programming, pp. 154–163. La Jolla, CA, USA (1993)
Google Scholar
Burlacu, B., Kammerer, L., Affenzeller, M., Kronberger, G.: Hash-based Tree Similarity and Simplification in Genetic Programming for Symbolic Regression. In: Computer Aided Systems Theory, EUROCAST 2019 (2019)
Google Scholar
Chen, C., Luo, C., Jiang, Z.: A multilevel block building algorithm for fast modeling generalized separable systems. Expert Systems with Applications 109, 25–34 (2018)
CrossRef
Google Scholar
Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107 (1968)
CrossRef
Google Scholar
Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Genetic Programming, Proceedings of EuroGP’2003, LNCS, vol. 2610, pp. 70–82. Springer-Verlag, Essex (2003)
Google Scholar
Keijzer, M., Babovic, V.: Genetic programming, ensemble methods and the bias/variance tradeoff - introductory investigations. In: Genetic Programming, Proceedings of EuroGP’2000, LNCS, vol. 1802, pp. 76–90. Springer-Verlag, Edinburgh (2000)
Google Scholar
Keijzer, M., Ryan, C., Murphy, G., Cattolico, M.: Undirected training of run transferable libraries. In: Proceedings of the 8th European Conference on Genetic Programming, Lecture Notes in Computer Science, vol. 3447, pp. 361–370. Springer, Lausanne, Switzerland (2005)
Google Scholar
Kommenda, M., Kronberger, G., Winkler, S., Affenzeller, M., Wagner, S.: Effects of constant optimization by nonlinear least squares minimization in symbolic regression. In: Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO ’13 Companion, pp. 1121–1128. ACM (2013)
Google Scholar
Korns, M.F.: Symbolic regression using abstract expression grammars. In: GEC ’09: Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp. 859–862. ACM, Shanghai, China (2009)
Google Scholar
Korns, M.F.: Abstract expression grammar symbolic regression. In: Genetic Programming Theory and Practice VIII, Genetic and Evolutionary Computation, vol. 8, chap. 7, pp. 109–128. Springer, Ann Arbor, USA (2010)
Google Scholar
Korns, M.F.: Extreme accuracy in symbolic regression. In: Genetic Programming Theory and Practice XI, Genetic and Evolutionary Computation, chap. 1, pp. 1–30. Springer, Ann Arbor, USA (2013)
Google Scholar
Korns, M.F.: Extremely accurate symbolic regression for large feature problems. In: Genetic Programming Theory and Practice XII, Genetic and Evolutionary Computation, pp. 109–131. Springer, Ann Arbor, USA (2014)
Google Scholar
Korns, M.F.: Highly accurate symbolic regression with noisy training data. In: Genetic Programming Theory and Practice XIII, Genetic and Evolutionary Computation, pp. 91–115. Springer, Ann Arbor, USA (2015)
Google Scholar
Kotanchek, M., Smits, G., Vladislavleva, E.: Trustable symbolic regression models: using ensembles, interval arithmetic and pareto fronts to develop robust and trust-aware models. In: Genetic Programming Theory and Practice V, Genetic and Evolutionary Computation, chap. 12, pp. 201–220. Springer, Ann Arbor (2007)
Google Scholar
Kotanchek, M.E., Vladislavleva, E., Smits, G.: Symbolic Regression Is Not Enough: It Takes a Village to Raise a Model, pp. 187–203. Springer New York, New York, NY (2013)
Google Scholar
Krawiec, K., Pawlak, T.: Locally geometric semantic crossover. In: GECCO Companion ’12: Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference companion, pp. 1487–1488. ACM, Philadelphia, Pennsylvania, USA (2012)
Google Scholar
Krawiec, K., Swan, J., O’Reilly, U.M.: Behavioral program synthesis: Insights and prospects. In: Genetic Programming Theory and Practice XIII, Genetic and Evolutionary Computation, pp. 169–183. Springer, Ann Arbor, USA (2015)
Google Scholar
Kronberger, G., Kammerer, L., Burlacu, B., Winkler, S.M., Kommenda, M., Affenzeller, M.: Cluster analysis of a symbolic regression search space. In: Genetic Programming Theory and Practice XVI. Springer, Ann Arbor, USA (2018)
Google Scholar
Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics 2(2), 164–168 (1944)
MathSciNet
MATH
CrossRef
Google Scholar
Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 11(2), 431–441 (1963)
MathSciNet
MATH
CrossRef
Google Scholar
McConaghy, T.: FFX: Fast, scalable, deterministic symbolic regression technology. In: Genetic Programming Theory and Practice IX, Genetic and Evolutionary Computation, chap. 13, pp. 235–260. Springer, Ann Arbor, USA (2011)
Google Scholar
Merkle, R.C.: A digital signature based on a conventional encryption function. In: Advances in Cryptology — CRYPTO ’87, pp. 369–378. Springer Berlin Heidelberg, Berlin, Heidelberg (1988)
Google Scholar
Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evolutionary Computation 5(4), 401–418 (1997)
CrossRef
Google Scholar
Poli, R.: A simple but theoretically-motivated method to control bloat in genetic programming. In: Genetic Programming, Proceedings of EuroGP’2003, LNCS, vol. 2610, pp. 204–217. Springer-Verlag, Essex (2003)
Google Scholar
Salustowicz, R.P., Schmidhuber, J.: Probabilistic incremental program evolution. Evolutionary Computation 5(2), 123–141 (1997)
CrossRef
Google Scholar
Schmidt, M., Lipson, H.: Co-evolving fitness predictors for accelerating and reducing evaluations. In: Genetic Programming Theory and Practice IV, Genetic and Evolutionary Computation, vol. 5, pp. 113–130. Springer, Ann Arbor (2006)
Google Scholar
Schmidt, M., Lipson, H.: Symbolic regression of implicit equations. In: Genetic Programming Theory and Practice VII, Genetic and Evolutionary Computation, chap. 5, pp. 73–85. Springer, Ann Arbor (2009)
Google Scholar
Schmidt, M., Lipson, H.: Age-fitness pareto optimization. In: Genetic Programming Theory and Practice VIII, Genetic and Evolutionary Computation, vol. 8, chap. 8, pp. 129–146. Springer, Ann Arbor, USA (2010)
Google Scholar
Smits, G., Kotanchek, M.: Pareto-front exploitation in symbolic regression. In: Genetic Programming Theory and Practice II, chap. 17, pp. 283–299. Springer, Ann Arbor (2004)
Google Scholar
Stijven, S., Vladislavleva, E., Kordon, A., Kotanchek, M.: Prime-time: Symbolic regression takes its place in industrial analysis. In: Genetic Programming Theory and Practice XIII, Genetic and Evolutionary Computation, pp. 241–260. Springer, Ann Arbor, USA (2015)
Google Scholar
Streeter, M.J.: Automated discovery of numerical approximation formulae via genetic programming. Master’s thesis, Computer Science, Worcester Polytechnic Institute, MA, USA (2001)
Google Scholar
Topchy, A., Punch, W.F.: Faster genetic programming based on local gradient search of numeric leaf values. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 155–162. Morgan Kaufmann, San Francisco, California, USA (2001)
Google Scholar
Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Galvan-Lopez, E.: Semantically-based crossover in genetic programming: application to real-valued symbolic regression. Genetic Programming and Evolvable Machines 12(2), 91–119 (2011)
CrossRef
Google Scholar
Vladislavleva, E.J., Smits, G.F., den Hertog, D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via Pareto genetic programming. IEEE Transactions on Evolutionary Computation 13(2), 333–349 (2009)
CrossRef
Google Scholar
Wagner, S., Affenzeller, M.: HeuristicLab: A generic and extensible optimization environment. In: Adaptive and Natural Computing Algorithms, pp. 538–541. Springer (2005)
Google Scholar
White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G., Jaśkowski, W., O’Reilly, U.M., Luke, S.: Better GP benchmarks: community survey results and proposals. Genetic Programming and Evolvable Machines 14(1), 3–29 (2013)
CrossRef
Google Scholar
Worm, T., Chiu, K.: Prioritized grammar enumeration: symbolic regression by dynamic programming. In: GECCO ’13: Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference, pp. 1021–1028. ACM, Amsterdam, The Netherlands (2013)
Google Scholar
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the royal statistical society: series B (statistical methodology) 67(2), 301–320 (2005)
Google Scholar