Abstract
Evolutionary algorithm research and applications began over 50 years ago. Like other artificial intelligence techniques, evolutionary algorithms will likely see increased use and development due to the increased availability of computation, more robust and available open source software libraries, and the increasing demand for artificial intelligence techniques. As these techniques become more adopted and capable, it is the right time to take a perspective of their ability to integrate into society and the human processes they intend to augment. In this review, we explore a new taxonomy of evolutionary algorithms and resulting classifications that look at five main areas: the ability to manage the control of the environment with limiters, the ability to explain and repeat the search process, the ability to understand input and output causality within a solution, the ability to manage algorithm bias due to data or user design, and lastly, the ability to add corrective measures. These areas are motivated by today’s pressures on industry to conform to both societies concerns and new government regulatory rules. As many reviews of evolutionary algorithms exist, after motivating this new taxonomy, we briefly classify a broad range of algorithms and identify areas of future research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Genetic Drift. https://evolution.berkeley.edu/evolibrary/article/evo_24. Last accessed February 4 2019
Art. 22 GDPR Automated individual decision-making, including profiling. Intersoft Consulting (2018). https://gdpr-info.eu/art-22-gdpr/. Last accessed November 22, 2018
Deep learning for electron microscopy. US Department of Energy (2018). https://m.phys.org/news/2018-12-deep-electron-microscopy.html. Last accessed December 22 2018
General Data Protection Regulation GDPR. Intersoft Consulting (2018). https://gdpr-info.eu. Last accessed November 22, 2018
A genetic algorithm predicts the vertical growth of cities. Spain Foundation for Science and Technology (2018). https://www.eurekalert.org/pub_releases/2018-05/f-sf-aga052518.php. Last accessed November 17 2018
ORNL Launches Summit Supercomputer. US Department of Energy (2018). https://www.ornl.gov/news/ornl-launches-summit-supercomputer. Last accessed April 29 2019
Welcoming the Era of Deep Neuroevolution. Uber Engineering (2018). https://eng.uber.com/deep-neuroevolution/. Last accessed December 28 2018
Aguirre, H. (ed.): GECCO ’18: Proceedings of the Genetic and Evolutionary Computation Conference Companion. ACM, New York, NY, USA (2018)
Arnold, J.: Genetic Drift (2001). https://www.sciencedirect.com/topics/neuroscience/genetic-drift. Last accessed April 29 2019
Backus, J.W.: The syntax and semantics of the proposed international algebraic language of the Zurich ACM-GAMM Conference. In: IFIP Congress (1959)
Bailey, B.: The Impact Of Moore’s Law Ending (2018). https://cacm.acm.org/news/232532-the-impact-of-moores-law-ending/fulltext. Last accessed April 29 2019
Beyer, H.G., Sendhoff, B.: Covariance matrix adaptation revisited—the CMSA evolution strategy (2008). https://www.researchgate.net/publication/220701715_Covariance_Matrix_Adaptation_Revisited_-_The_CMSA_Evolution_Strategy_-. Last accessed February 6 2019
Brameier, M., Banzhaf, W.: Linear Genetic Programming. No. XVI in Genetic and Evolutionary Computation. Springer (2007). URL http://www.springer.com/west/home/default?SGWID=4-40356-22-173660820-0
Broad, W.J.: Paul Feyerabend: Science and the Anarchist (2018). https://www.jstor.org/stable/1749231?seq=1#page_scan_tab_contents. Last accessed April 4 2019
Brownlee, J.: Overfitting and underfitting with machine learning algorithms (2016). https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/. Last accessed April 29 2019
Brownlee, J.: Annual “humies” awards for human-competitive results (2018). http://www.human-competitive.org. Last accessed November 12 2018
Brownlee, J.: Tabu search (2018). http://www.cleveralgorithms.com/nature-inspired/stochastic/tabu_search.html. Last accessed January 10 2019
Buckley, S., McCaughan, A., Chiles, J., P. Mirin, R., Woo Nam, S., Shainline, J., Bruer, G., Plank, J., Schuman, C.: Design of superconducting optoelectronic networks for neuromorphic computing. In: 2018 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–7 (2018)
Burkhardt, R.W.: Lamarck, evolution, and the inheritance of acquired characters. Genetics 194 4, 793–805 (2013)
Chang, O., Lipson, H.: Neural network quine. CoRR abs/1803.05859 (2018). URL http://arxiv.org/abs/1803.05859
Cossins, D.: Discriminating algorithms: 5 times ai showed prejudice (2018). https://www.newscientist.com/article/2166207-discriminating-algorithms-5-times-ai-showed-prejudice/. Last accessed April 26 2019
Dahad, N.: Imec, ASML Team on Post-3nm Lithography (2018). https://www.eetimes.com/document.asp?doc_id=1333896. Last accessed January 7 2019
Darwin, C.: On the Origin of Species by Means of Natural Selection. Murray, London (1859)
Dennard, R.H., Gaensslen, F.H., Rideout, V.L., Bassous, E., LeBlanc, A.R.: Design of ion-implanted mosfet’s with very small physical dimensions. IEEE Journal of Solid-State Circuits 9(5), 256–268 (1974)
Diab, W.: About JTC 1/SC 42 Artificial intelligence (2018). https://jtc1info.org/jtc1-press-committee-info-about-jtc-1-sc-42/. Last accessed December 22 2018
Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., O’Neill, M.: PonyGE2: Grammatical Evolution in Python. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’17, pp. 1194–1201. ACM, Berlin, Germany (2017)
Ferreira, C.: Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems 13(2), 87–129 (2001)
Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence. Springer (2006)
Furber, S.: SpiNNaker (2018). http://apt.cs.manchester.ac.uk/projects/SpiNNaker/project/. Last accessed November 11 2018
Gibbs, M.: Genetic programming meets regular expressions (2015). https://www.networkworld.com/article/2955126/software/genetic-programming-meets-regular-expressions.html. Last accessed January 2 2019
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1989)
Hansen, N.: The cma evolution strategy: A tutorial. CoRR abs/1604.00772 (2016). URL http://arxiv.org/abs/1604.00772
Harper, R., Chapman, R., Ferrie, C., Granade, C., Kueng, R., Naoumenko, D., T. Flammia, S., Peruzzo, A.: Explaining quantum correlations through evolution of causal models. Physical Review A 95 (2016)
Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
Hintze, A., Edlund, J.A., Olson, R.S., Knoester, D.B., Schossau, J., Albantakis, L., Tehrani-Saleh, A., Kvam, P.D., Sheneman, L., Goldsby, H., Bohm, C., Adami, C.: Markov Brains: A Technical Introduction. ArXiv abs/1709.05601 (2017)
Hornby, G., Globus, A., Linden, D., Lohn, J.: Automated antenna design with evolutionary algorithms. Collection of Technical Papers - Space 2006 Conference 1 (2006)
Ivan: Parallel and distributed genetic algorithms (2018). https://towardsdatascience.com/parallel-and-distributed-genetic-algorithms-1ed2e76866e3. Last accessed February 7 2019
Izzo, D., Ruciński, M., Biscani, F.: The generalized island model. In: Parallel Architectures and Bioinspired Algorithms, pp. 151–169. Springer (2012)
Jain, R., Rivera, M.C., Lake, J.A.: Horizontal gene transfer among genomes: The complexity hypothesis. Proceedings of the National Academy of Sciences 96(7), 3801–3806 (1999)
Kelly, S., Heywood, M.I.: Emergent tangled graph representations for Atari game playing agents. In: M. Castelli, J. McDermott, L. Sekanina (eds.) EuroGP 2017: Proceedings of the 20th European Conference on Genetic Programming, LNCS, vol. 10196, pp. 64–79. Springer Verlag, Amsterdam (2017). https://doi.org/10.1007/978-3-319-55696-3_5. Best paper
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA (1992)
Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge Massachusetts (1994)
Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.: Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufman (1999)
Kuepper, J.: Using genetic algorithms to forecast financial market (2018). https://www.investopedia.com/articles/financial-theory/11/using-genetic-algorithms-forecast-financial-markets.asp. Last accessed November 17 2018
Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. LuLu Selfpublishing (2018)
Leswing, K.: Jeff Bezos just perfectly summed up what you need to know about artificial intelligence (2018). https://www.businessinsider.com/jeff-bezos-shareholder-letter-on-ai-and-machine-learning-2017-4. Last accessed December 20 2018
LLVM.org: The LLVM Compiler Infrastructure Project. https://llvm.org/. Last accessed January 2 2019
Luke, S.: Essentials of Metaheuristics, first edn. lulu.com (2009). URL http://cs.gmu.edu/~sean/book/metaheuristics/. Available at http://cs.gmu.edu/~sean/books/metaheuristics/
Maass, W.: Networks of Spiking Neurons: The Third Generation of Neural Network Models. Neural Networks 10, 1659–1671 (1996)
Maheswaranathan, N., Metz, L., Tucker, G., Sohl-Dickstein, J.: Guided evolutionary strategies: escaping the curse of dimensionality in random search. CoRR abs/1806.10230 (2018). URL http://arxiv.org/abs/1806.10230
Miller, J.F.: Cartesian genetic programming. In: J.F. Miller (ed.) Cartesian Genetic Programming, Natural Computing Series, chap. 2, pp. 17–34. Springer (2011)
Morgan, T.J.H., Griffiths, T.L.: What the Baldwin Effect affects. In: CogSci (2015)
Mosescu, L.: Darwin neuroevolution framework (2018). Urlhttps://github.com/tlemo/darwin. Last accessed February 4 2019
N. Krasnogor S. Gustafson, D.A.P., Verdegay, J.L.: Systems Self-Assembly, Volume 5: Multidisciplinary Snapshots (Studies in Multidisciplinarity. Elsevier Science (2008)
Neumann, J.V.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign, IL, USA (1966)
Ochi, L., Vianna, D., Drummond, L., Victor, A.: A parallel evolutionary algorithm for the vehicle routing problem with heterogeneous fleet. Future Generation Computer Systems 14, 285–292 (1998)
Olson, R.S., Urbanowicz, R.J., Andrews, P.C., Lavender, N.A., Kidd, L.C., Moore, J.H.: Proceedings of Evo Applications 2016, Porto, Portugal, March 30–April 1, 2016, Part I, chap. Automating Biomedical Data Science Through Tree-Based Pipeline Optimization, pp. 123–137. Springer (2016)
Pearl, J., Mackenzie, D.: The Book of Why: The New Science of Cause and Effect, 1st edn. Basic Books, Inc., New York, NY, USA (2018)
Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Woodward, J.R.: Genetic improvement of software: a comprehensive survey. IEEE Transactions on Evolutionary Computation 22(3), 415–432 (2018)
Purohit, A., Choudhari, N.S.: Code bloat problem in genetic programming (2013). http://www.ijsrp.org/research-paper-0413/ijsrp-p1612.pdf. Last accessed May 26 2019
Real, E.: Using evolutionary AutoML to discover neural network architectures (2018). https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html. Last accessed December 22 2018
Real, E., Aggarwal, A., Huang, Y., V Le, Q.: Regularized evolution for image classifier architecture search (2018). https://arxiv.org/abs/1802.01548. Last accessed December 28 2018
Russell, B.: The Value of Philosophy. In: S.M. Cahn (ed.) Exploring Philosophy: An Introductory Anthology. Oxford University Press (2009)
Shapiro, J.: A 21st century view of evolution: Genome system architecture, repetitive dna, and natural genetic engineering. Gene 345, 91–100 (2005)
Siebel, N.T.: Evolutionary reinforcement learning. http://www.siebel-research.de/evolutionary_learning/. Last accessed January 2 2019
Simon, D.: Evolutionary Optimization Algorithms. Wiley (2013). URL https://books.google.com/books?id=gwUwIEPqk30C
Simonite, T.: Moore’s Law Is Dead. Now What? (2016). https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/. Last accessed January 7 2019
Spector, L.: Push, PushGP and Pushpop (2018). http://faculty.hampshire.edu/lspector/push.html. Last accessed December 28 2018
Spector, L., McPhee, N.F., Helmuth, T., Casale, M.M., Oks, J.: Evolution evolves with autoconstruction. In: T. Friedrich, et al. (eds.) GECCO ’16 Companion: Proceedings of the Companion Publication of the 2016 Annual Conference on Genetic and Evolutionary Computation, pp. 1349–1356. ACM, Denver, Colorado, USA (2016). https://doi.org/10.1145/2908961.2931727
Stanley, K.: Compositional pattern producing networks: A novel abstraction of development. Genetic Programming and Evolvable Machines 8, 131–162 (2007)
Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artificial Life 15(2), 185–212 (2009)
Stanley, K.O., Miikkulainen, R.: Evolving neural network through augmenting topologies. Evolutionary Computation 10(2), 99–127 (2002)
Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. ArXiv abs/1712.06567 (2017)
Sverdlik, Y.: Google is switching to a self-driving data center management system (2018). https://www.datacenterknowledge.com/google-alphabet/google-switching-self-driving-data-center-management-system. Last accessed January 8 2019
Tokmakova, A.: Optimizing floorplans via experimental algorithms (2018). https://archinect.com/news/article/150108746/optimizing-floorplans-via-experimental-algorithms. Last accessed December 22 2018
Turing, A.: The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B 237, 37–72 (1952)
Wall, M.: Galib: Matthew’s C++ genetic algorithms library (1996). http://lancet.mit.edu/galib-2.4/. Last accessed February 4 2019
Whitley, D., Chicano, F., Ochoa, G., Sutton, A., Tinós, R.: Next generation genetic algorithms (2018). http://gecco-2018.sigevo.org/index.html/tiki-index.php?page=Tutorials Last March 7 2019
Whittaker, M., Crawford, K., Dobbe, R., Fried, G., Kaziunas, E., Mathur, V., West, S.M., Richardson, R., Schultz, J.: AI Now 2018 Report (2018). https://ainowinstitute.org/AI_Now_2018_Report.pdf. Last accessed December 20 2018
Wilson, D.G., Cussat-Blanc, S., Luga, H., Miller, J.F.: Evolving simple programs for playing Atari games. In: H. Aguirre, et al. (eds.) GECCO ’18: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 229–236. ACM, Kyoto, Japan (2018)
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)
Zaldivar, A.: Introduction to fairness in machine learning (2018). https://developers.googleblog.com/2018/11/introduction-to-fairness-in-machine.html. Last accessed January 8 2019
Acknowledgements
We would like to acknowledge the following people for their encouragement and feedback during the writing of this review, namely Mbou Eyole, Casey Axe, Paul Gleichauf, Gary Carpenter, Andy Loats, Rene De Jong, Charlotte Christopherson, Leonard Mosescu, Vasileios Laganakos, Julian Miller, David Ha, Bill Worzel, William B. Langdon, Daniel Simon, Emre Ozer, Arthur Kordon, Hannah Peeler and Stuart W. Card.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Sloss, A.N., Gustafson, S. (2020). 2019 Evolutionary Algorithms Review. In: Banzhaf, W., Goodman, E., Sheneman, L., Trujillo, L., Worzel, B. (eds) Genetic Programming Theory and Practice XVII. Genetic and Evolutionary Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-39958-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-39958-0_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39957-3
Online ISBN: 978-3-030-39958-0
eBook Packages: Computer ScienceComputer Science (R0)