Skip to main content

2019 Evolutionary Algorithms Review

  • Chapter
  • First Online:
Genetic Programming Theory and Practice XVII

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

Abstract

Evolutionary algorithm research and applications began over 50 years ago. Like other artificial intelligence techniques, evolutionary algorithms will likely see increased use and development due to the increased availability of computation, more robust and available open source software libraries, and the increasing demand for artificial intelligence techniques. As these techniques become more adopted and capable, it is the right time to take a perspective of their ability to integrate into society and the human processes they intend to augment. In this review, we explore a new taxonomy of evolutionary algorithms and resulting classifications that look at five main areas: the ability to manage the control of the environment with limiters, the ability to explain and repeat the search process, the ability to understand input and output causality within a solution, the ability to manage algorithm bias due to data or user design, and lastly, the ability to add corrective measures. These areas are motivated by today’s pressures on industry to conform to both societies concerns and new government regulatory rules. As many reviews of evolutionary algorithms exist, after motivating this new taxonomy, we briefly classify a broad range of algorithms and identify areas of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Genetic Drift. https://evolution.berkeley.edu/evolibrary/article/evo_24. Last accessed February 4 2019

  2. Art. 22 GDPR Automated individual decision-making, including profiling. Intersoft Consulting (2018). https://gdpr-info.eu/art-22-gdpr/. Last accessed November 22, 2018

  3. Deep learning for electron microscopy. US Department of Energy (2018). https://m.phys.org/news/2018-12-deep-electron-microscopy.html. Last accessed December 22 2018

  4. General Data Protection Regulation GDPR. Intersoft Consulting (2018). https://gdpr-info.eu. Last accessed November 22, 2018

  5. A genetic algorithm predicts the vertical growth of cities. Spain Foundation for Science and Technology (2018). https://www.eurekalert.org/pub_releases/2018-05/f-sf-aga052518.php. Last accessed November 17 2018

  6. ORNL Launches Summit Supercomputer. US Department of Energy (2018). https://www.ornl.gov/news/ornl-launches-summit-supercomputer. Last accessed April 29 2019

  7. Welcoming the Era of Deep Neuroevolution. Uber Engineering (2018). https://eng.uber.com/deep-neuroevolution/. Last accessed December 28 2018

  8. Aguirre, H. (ed.): GECCO ’18: Proceedings of the Genetic and Evolutionary Computation Conference Companion. ACM, New York, NY, USA (2018)

    Google Scholar 

  9. Arnold, J.: Genetic Drift (2001). https://www.sciencedirect.com/topics/neuroscience/genetic-drift. Last accessed April 29 2019

  10. Backus, J.W.: The syntax and semantics of the proposed international algebraic language of the Zurich ACM-GAMM Conference. In: IFIP Congress (1959)

    Google Scholar 

  11. Bailey, B.: The Impact Of Moore’s Law Ending (2018). https://cacm.acm.org/news/232532-the-impact-of-moores-law-ending/fulltext. Last accessed April 29 2019

  12. Beyer, H.G., Sendhoff, B.: Covariance matrix adaptation revisited—the CMSA evolution strategy (2008). https://www.researchgate.net/publication/220701715_Covariance_Matrix_Adaptation_Revisited_-_The_CMSA_Evolution_Strategy_-. Last accessed February 6 2019

  13. Brameier, M., Banzhaf, W.: Linear Genetic Programming. No. XVI in Genetic and Evolutionary Computation. Springer (2007). URL http://www.springer.com/west/home/default?SGWID=4-40356-22-173660820-0

  14. Broad, W.J.: Paul Feyerabend: Science and the Anarchist (2018). https://www.jstor.org/stable/1749231?seq=1#page_scan_tab_contents. Last accessed April 4 2019

  15. Brownlee, J.: Overfitting and underfitting with machine learning algorithms (2016). https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/. Last accessed April 29 2019

  16. Brownlee, J.: Annual “humies” awards for human-competitive results (2018). http://www.human-competitive.org. Last accessed November 12 2018

  17. Brownlee, J.: Tabu search (2018). http://www.cleveralgorithms.com/nature-inspired/stochastic/tabu_search.html. Last accessed January 10 2019

  18. Buckley, S., McCaughan, A., Chiles, J., P. Mirin, R., Woo Nam, S., Shainline, J., Bruer, G., Plank, J., Schuman, C.: Design of superconducting optoelectronic networks for neuromorphic computing. In: 2018 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–7 (2018)

    Google Scholar 

  19. Burkhardt, R.W.: Lamarck, evolution, and the inheritance of acquired characters. Genetics 194 4, 793–805 (2013)

    Google Scholar 

  20. Chang, O., Lipson, H.: Neural network quine. CoRR abs/1803.05859 (2018). URL http://arxiv.org/abs/1803.05859

  21. Cossins, D.: Discriminating algorithms: 5 times ai showed prejudice (2018). https://www.newscientist.com/article/2166207-discriminating-algorithms-5-times-ai-showed-prejudice/. Last accessed April 26 2019

  22. Dahad, N.: Imec, ASML Team on Post-3nm Lithography (2018). https://www.eetimes.com/document.asp?doc_id=1333896. Last accessed January 7 2019

  23. Darwin, C.: On the Origin of Species by Means of Natural Selection. Murray, London (1859)

    Google Scholar 

  24. Dennard, R.H., Gaensslen, F.H., Rideout, V.L., Bassous, E., LeBlanc, A.R.: Design of ion-implanted mosfet’s with very small physical dimensions. IEEE Journal of Solid-State Circuits 9(5), 256–268 (1974)

    Article  Google Scholar 

  25. Diab, W.: About JTC 1/SC 42 Artificial intelligence (2018). https://jtc1info.org/jtc1-press-committee-info-about-jtc-1-sc-42/. Last accessed December 22 2018

  26. Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., O’Neill, M.: PonyGE2: Grammatical Evolution in Python. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’17, pp. 1194–1201. ACM, Berlin, Germany (2017)

    Google Scholar 

  27. Ferreira, C.: Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems 13(2), 87–129 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence. Springer (2006)

    Google Scholar 

  29. Furber, S.: SpiNNaker (2018). http://apt.cs.manchester.ac.uk/projects/SpiNNaker/project/. Last accessed November 11 2018

  30. Gibbs, M.: Genetic programming meets regular expressions (2015). https://www.networkworld.com/article/2955126/software/genetic-programming-meets-regular-expressions.html. Last accessed January 2 2019

  31. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1989)

    MATH  Google Scholar 

  32. Hansen, N.: The cma evolution strategy: A tutorial. CoRR abs/1604.00772 (2016). URL http://arxiv.org/abs/1604.00772

  33. Harper, R., Chapman, R., Ferrie, C., Granade, C., Kueng, R., Naoumenko, D., T. Flammia, S., Peruzzo, A.: Explaining quantum correlations through evolution of causal models. Physical Review A 95 (2016)

    Google Scholar 

  34. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hintze, A., Edlund, J.A., Olson, R.S., Knoester, D.B., Schossau, J., Albantakis, L., Tehrani-Saleh, A., Kvam, P.D., Sheneman, L., Goldsby, H., Bohm, C., Adami, C.: Markov Brains: A Technical Introduction. ArXiv abs/1709.05601 (2017)

    Google Scholar 

  36. Hornby, G., Globus, A., Linden, D., Lohn, J.: Automated antenna design with evolutionary algorithms. Collection of Technical Papers - Space 2006 Conference 1 (2006)

    Google Scholar 

  37. Ivan: Parallel and distributed genetic algorithms (2018). https://towardsdatascience.com/parallel-and-distributed-genetic-algorithms-1ed2e76866e3. Last accessed February 7 2019

  38. Izzo, D., Ruciński, M., Biscani, F.: The generalized island model. In: Parallel Architectures and Bioinspired Algorithms, pp. 151–169. Springer (2012)

    Google Scholar 

  39. Jain, R., Rivera, M.C., Lake, J.A.: Horizontal gene transfer among genomes: The complexity hypothesis. Proceedings of the National Academy of Sciences 96(7), 3801–3806 (1999)

    Article  Google Scholar 

  40. Kelly, S., Heywood, M.I.: Emergent tangled graph representations for Atari game playing agents. In: M. Castelli, J. McDermott, L. Sekanina (eds.) EuroGP 2017: Proceedings of the 20th European Conference on Genetic Programming, LNCS, vol. 10196, pp. 64–79. Springer Verlag, Amsterdam (2017). https://doi.org/10.1007/978-3-319-55696-3_5. Best paper

    Google Scholar 

  41. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA (1992)

    MATH  Google Scholar 

  42. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge Massachusetts (1994)

    MATH  Google Scholar 

  43. Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.: Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufman (1999)

    Google Scholar 

  44. Kuepper, J.: Using genetic algorithms to forecast financial market (2018). https://www.investopedia.com/articles/financial-theory/11/using-genetic-algorithms-forecast-financial-markets.asp. Last accessed November 17 2018

  45. Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. LuLu Selfpublishing (2018)

    Google Scholar 

  46. Leswing, K.: Jeff Bezos just perfectly summed up what you need to know about artificial intelligence (2018). https://www.businessinsider.com/jeff-bezos-shareholder-letter-on-ai-and-machine-learning-2017-4. Last accessed December 20 2018

  47. LLVM.org: The LLVM Compiler Infrastructure Project. https://llvm.org/. Last accessed January 2 2019

  48. Luke, S.: Essentials of Metaheuristics, first edn. lulu.com (2009). URL http://cs.gmu.edu/~sean/book/metaheuristics/. Available at http://cs.gmu.edu/~sean/books/metaheuristics/

  49. Maass, W.: Networks of Spiking Neurons: The Third Generation of Neural Network Models. Neural Networks 10, 1659–1671 (1996)

    Article  Google Scholar 

  50. Maheswaranathan, N., Metz, L., Tucker, G., Sohl-Dickstein, J.: Guided evolutionary strategies: escaping the curse of dimensionality in random search. CoRR abs/1806.10230 (2018). URL http://arxiv.org/abs/1806.10230

  51. Miller, J.F.: Cartesian genetic programming. In: J.F. Miller (ed.) Cartesian Genetic Programming, Natural Computing Series, chap. 2, pp. 17–34. Springer (2011)

    Google Scholar 

  52. Morgan, T.J.H., Griffiths, T.L.: What the Baldwin Effect affects. In: CogSci (2015)

    Google Scholar 

  53. Mosescu, L.: Darwin neuroevolution framework (2018). Urlhttps://github.com/tlemo/darwin. Last accessed February 4 2019

  54. N. Krasnogor S. Gustafson, D.A.P., Verdegay, J.L.: Systems Self-Assembly, Volume 5: Multidisciplinary Snapshots (Studies in Multidisciplinarity. Elsevier Science (2008)

    Google Scholar 

  55. Neumann, J.V.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign, IL, USA (1966)

    Google Scholar 

  56. Ochi, L., Vianna, D., Drummond, L., Victor, A.: A parallel evolutionary algorithm for the vehicle routing problem with heterogeneous fleet. Future Generation Computer Systems 14, 285–292 (1998)

    Article  Google Scholar 

  57. Olson, R.S., Urbanowicz, R.J., Andrews, P.C., Lavender, N.A., Kidd, L.C., Moore, J.H.: Proceedings of Evo Applications 2016, Porto, Portugal, March 30–April 1, 2016, Part I, chap. Automating Biomedical Data Science Through Tree-Based Pipeline Optimization, pp. 123–137. Springer (2016)

    Google Scholar 

  58. Pearl, J., Mackenzie, D.: The Book of Why: The New Science of Cause and Effect, 1st edn. Basic Books, Inc., New York, NY, USA (2018)

    MATH  Google Scholar 

  59. Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Woodward, J.R.: Genetic improvement of software: a comprehensive survey. IEEE Transactions on Evolutionary Computation 22(3), 415–432 (2018)

    Article  Google Scholar 

  60. Purohit, A., Choudhari, N.S.: Code bloat problem in genetic programming (2013). http://www.ijsrp.org/research-paper-0413/ijsrp-p1612.pdf. Last accessed May 26 2019

  61. Real, E.: Using evolutionary AutoML to discover neural network architectures (2018). https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html. Last accessed December 22 2018

  62. Real, E., Aggarwal, A., Huang, Y., V Le, Q.: Regularized evolution for image classifier architecture search (2018). https://arxiv.org/abs/1802.01548. Last accessed December 28 2018

  63. Russell, B.: The Value of Philosophy. In: S.M. Cahn (ed.) Exploring Philosophy: An Introductory Anthology. Oxford University Press (2009)

    Google Scholar 

  64. Shapiro, J.: A 21st century view of evolution: Genome system architecture, repetitive dna, and natural genetic engineering. Gene 345, 91–100 (2005)

    Article  Google Scholar 

  65. Siebel, N.T.: Evolutionary reinforcement learning. http://www.siebel-research.de/evolutionary_learning/. Last accessed January 2 2019

  66. Simon, D.: Evolutionary Optimization Algorithms. Wiley (2013). URL https://books.google.com/books?id=gwUwIEPqk30C

  67. Simonite, T.: Moore’s Law Is Dead. Now What? (2016). https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/. Last accessed January 7 2019

  68. Spector, L.: Push, PushGP and Pushpop (2018). http://faculty.hampshire.edu/lspector/push.html. Last accessed December 28 2018

  69. Spector, L., McPhee, N.F., Helmuth, T., Casale, M.M., Oks, J.: Evolution evolves with autoconstruction. In: T. Friedrich, et al. (eds.) GECCO ’16 Companion: Proceedings of the Companion Publication of the 2016 Annual Conference on Genetic and Evolutionary Computation, pp. 1349–1356. ACM, Denver, Colorado, USA (2016). https://doi.org/10.1145/2908961.2931727

    Chapter  Google Scholar 

  70. Stanley, K.: Compositional pattern producing networks: A novel abstraction of development. Genetic Programming and Evolvable Machines 8, 131–162 (2007)

    Article  Google Scholar 

  71. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artificial Life 15(2), 185–212 (2009)

    Article  Google Scholar 

  72. Stanley, K.O., Miikkulainen, R.: Evolving neural network through augmenting topologies. Evolutionary Computation 10(2), 99–127 (2002)

    Article  Google Scholar 

  73. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. ArXiv abs/1712.06567 (2017)

    Google Scholar 

  74. Sverdlik, Y.: Google is switching to a self-driving data center management system (2018). https://www.datacenterknowledge.com/google-alphabet/google-switching-self-driving-data-center-management-system. Last accessed January 8 2019

  75. Tokmakova, A.: Optimizing floorplans via experimental algorithms (2018). https://archinect.com/news/article/150108746/optimizing-floorplans-via-experimental-algorithms. Last accessed December 22 2018

  76. Turing, A.: The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B 237, 37–72 (1952)

    MathSciNet  MATH  Google Scholar 

  77. Wall, M.: Galib: Matthew’s C++ genetic algorithms library (1996). http://lancet.mit.edu/galib-2.4/. Last accessed February 4 2019

  78. Whitley, D., Chicano, F., Ochoa, G., Sutton, A., Tinós, R.: Next generation genetic algorithms (2018). http://gecco-2018.sigevo.org/index.html/tiki-index.php?page=Tutorials Last March 7 2019

  79. Whittaker, M., Crawford, K., Dobbe, R., Fried, G., Kaziunas, E., Mathur, V., West, S.M., Richardson, R., Schultz, J.: AI Now 2018 Report (2018). https://ainowinstitute.org/AI_Now_2018_Report.pdf. Last accessed December 20 2018

  80. Wilson, D.G., Cussat-Blanc, S., Luga, H., Miller, J.F.: Evolving simple programs for playing Atari games. In: H. Aguirre, et al. (eds.) GECCO ’18: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 229–236. ACM, Kyoto, Japan (2018)

    Google Scholar 

  81. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)

    Article  Google Scholar 

  82. Zaldivar, A.: Introduction to fairness in machine learning (2018). https://developers.googleblog.com/2018/11/introduction-to-fairness-in-machine.html. Last accessed January 8 2019

Download references

Acknowledgements

We would like to acknowledge the following people for their encouragement and feedback during the writing of this review, namely Mbou Eyole, Casey Axe, Paul Gleichauf, Gary Carpenter, Andy Loats, Rene De Jong, Charlotte Christopherson, Leonard Mosescu, Vasileios Laganakos, Julian Miller, David Ha, Bill Worzel, William B. Langdon, Daniel Simon, Emre Ozer, Arthur Kordon, Hannah Peeler and Stuart W. Card.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew N. Sloss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sloss, A.N., Gustafson, S. (2020). 2019 Evolutionary Algorithms Review. In: Banzhaf, W., Goodman, E., Sheneman, L., Trujillo, L., Worzel, B. (eds) Genetic Programming Theory and Practice XVII. Genetic and Evolutionary Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-39958-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39958-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39957-3

  • Online ISBN: 978-3-030-39958-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics