Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: A grammar design pattern for arbitrary program synthesis problems in genetic programming. In: M. Castelli, J. McDermott, L. Sekanina (eds.) EuroGP 2017: Proceedings of the 20th European Conference on Genetic Programming, LNCS, vol. 10196, pp. 262–277. Springer Verlag, Amsterdam (2017). https://doi.org/10.1007/978-3-319-55696-3_17
Google Scholar
Helmuth, T., McPhee, N.F., Pantridge, E., Spector, L.: Improving generalization of evolved programs through automatic simplification. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17, pp. 937–944. ACM, Berlin, Germany (2017). https://doi.org/10.1145/3071178.3071330. http://doi.acm.org/10.1145/3071178.3071330
Helmuth, T., McPhee, N.F., Spector, L.: Program synthesis using uniform mutation by addition and deletion. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’18, pp. 1127–1134. ACM, New York, NY, USA (2018). https://doi.org/10.1145/3205455.3205603. http://doi.acm.org/10.1145/3205455.3205603
Helmuth, T., Spector, L.: Detailed problem descriptions for general program synthesis benchmark suite. Technical Report UM-CS-2015-006, Computer Science, University of Massachusetts, Amherst (2015). https://web.cs.umass.edu/publication/details.php?id=2387
Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: GECCO ’15: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1039–1046. ACM, Madrid, Spain (2015). https://doi.org/10.1145/2739480.2754769. http://doi.acm.org/10.1145/2739480.2754769
Helmuth, T., Spector, L., McPhee, N.F., Shanabrook, S.: Linear genomes for structured programs. In: Genetic Programming Theory and Practice XIV. Springer (2017)
Google Scholar
Kitzelmann, E.: Inductive programming: A survey of program synthesis techniques. In: U. Schmid, E. Kitzelmann, R. Plasmeijer (eds.) Approaches and Applications of Inductive Programming, pp. 50–73. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)
CrossRef
Google Scholar
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA (1992). http://mitpress.mit.edu/books/genetic-programming
MATH
Google Scholar
La Cava, W., Helmuth, T., Spector, L., Danai, K.: Genetic programming with epigenetic local search. In: GECCO ’15: Proceedings of the 2015 conference on Genetic and Evolutionary Computation Conference, pp. 1055–1062. ACM, Madrid, Spain (2015). https://doi.org/10.1145/2739480.2754763. http://doi.acm.org/10.1145/2739480.2754763
Lalejini, A., Ofria, C.: Evolving event-driven programs with signalgp. CoRR abs/1804.05445 (2018). http://arxiv.org/abs/1804.05445
Pantridge, E., Helmuth, T., McPhee, N.F., Spector, L.: On the difficulty of benchmarking inductive program synthesis methods. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’17, pp. 1589–1596. ACM, New York, NY, USA (2017). https://doi.org/10.1145/3067695.3082533. http://doi.acm.org/10.1145/3067695.3082533
Pantridge, E., Spector, L.: PyshGP: PushGP in python. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’17, pp. 1255–1262. ACM, Berlin, Germany (2017). https://doi.org/10.1145/3067695.3082468. http://doi.acm.org/10.1145/3067695.3082468
Pantridge, E., Spector, L.: Plushi: An embeddable, language agnostic, push interpreter. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’18, pp. 1379–1385. ACM, New York, NY, USA (2018). https://doi.org/10.1145/3205651.3208296. http://doi.acm.org/10.1145/3205651.3208296
Perelman, D., Gulwani, S., Grossman, D., Provost, P.: Test-driven synthesis. ACM SIGPLAN Notices 49(6), 408–418 (2014). https://doi.org/10.1145/2594291.2594297
CrossRef
Google Scholar
Robinson, A.: Genetic programming: Theory, implementation, and the evolution of unconstrained solutions. Division iii thesis, Hampshire College (2001). http://hampshire.edu/lspector/robinson-div3.pdf
Rosin, C.D.: Stepping stones to inductive synthesis of low-level looping programs. CoRR abs/1811.10665 (2018). http://arxiv.org/abs/1811.10665
Spector, L., Helmuth, T.: Uniform linear transformation with repair and alternation in genetic programming. In: Genetic Programming Theory and Practice XI, Genetic and Evolutionary Computation, chap. 8, pp. 137–153. Springer, Ann Arbor, USA (2013). https://doi.org/10.1007/978-1-4939-0375-7_8. http://link.springer.com/chapter/10.1007%2F978-1-4939-0375-7_8
Spector, L., Helmuth, T.: Effective simplification of evolved push programs using a simple, stochastic hill-climber. In: GECCO Comp ’14: Proceedings of the 2014 conference companion on Genetic and evolutionary computation companion, pp. 147–148. ACM, Vancouver, BC, Canada (2014). https://doi.org/10.1145/2598394.2598414. http://doi.acm.org/10.1145/2598394.2598414
Spector, L., Klein, J., Keijzer, M.: The push3 execution stack and the evolution of control. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, vol. 2, pp. 1689–1696. ACM Press, Washington DC, USA (2005). https://doi.org/10.1145/1068009.1068292. http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005/docs/p1689.pdf
Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution with the push programming language. Genetic Programming and Evolvable Machines 3(1), 7–40 (2002). https://doi.org/10.1023/A:1014538503543. http://hampshire.edu/lspector/pubs/push-gpem-final.pdf