Skip to main content

Ferrite Nanoparticles for Biomedical Applications

  • Chapter
  • First Online:
Magnetic Nanoheterostructures

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Iron oxide nanoparticles specially ferrites have gained a lot of attention in recent years due to their applications in diverse field and particularly in biomedical field where their enhanced magnetic properties offer diversity in imaging, diagnosis, and treatment. There are numerous types of ferrites that have been synthesized and presented for different applications but ferrite based on Co, Ni, and Zn has shown potential for biomedical applications due to high magnetic anisotropy and biocompatability. Ferrites nanoparticles can be prepared by different protocols such as co-precipitation, and sol-gel, hydrothermal. These methods are very efficient and produce high yield of ferrite powder. In this chapter, we have summarized the basic introduction of ferrites, types of ferrites, their crystal structures, and applications in the biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeela N et al (2018) Role of Ni concentration on structural and magnetic properties of inverse spinel Ferrite. Mater Res Bull 107:60–65

    Article  CAS  Google Scholar 

  • Ali Umar A, Oyama M (2005) Growth of high-density gold nanoparticles on an indium tin oxide surface prepared using a “touch” seed-mediated growth technique. Cryst Growth Des 5(2):599–607

    Article  CAS  Google Scholar 

  • Andersen HL et al (2018) Crystalline and magnetic structure–property relationship in spinel ferrite nanoparticles. Nanoscale 10(31):14902–14914

    Article  CAS  Google Scholar 

  • Anderson PW (1956) Ordering and antiferromagnetism in ferrites. Phys Rev 102(4):1008

    Article  CAS  Google Scholar 

  • Baig MM.et al. (2019) Optimization of different wet chemical routes and phase evolution studies of MnFe2O4 nanoparticles. Ceram Int

    Google Scholar 

  • Bakhtiary Z et al. (2016) Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges. Nanomedicine: Nanotechnol, Biol Med 12(2): 287–307

    Google Scholar 

  • Balivada S et al (2010) A/C magnetic hyperthermia of melanoma mediated by iron (0)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer 10(1):119

    Article  CAS  Google Scholar 

  • Bean C, Livingston UD (1959) Superparamagnetism. J Appl Phys 30(4):S120–S129

    Article  Google Scholar 

  • Bhattacharyya S et al (2011) Inorganic nanoparticles in cancer therapy. Pharm Res 28(2):237–259

    Article  CAS  Google Scholar 

  • Brubaker C et al (2014) Using frankencerts for automated adversarial testing of certificate validation in SSL/TLS implementations. In: 2014 IEEE symposium on security and privacy, IEEE

    Google Scholar 

  • Caltun O et al (2008) Substituted cobalt ferrites for sensors applications. J Magn Magn Mater 320(20):e869–e873

    Article  CAS  Google Scholar 

  • Chen D-H, He X-R (2001) Synthesis of nickel ferrite nanoparticles by sol-gel method. Mater Res Bull 36(7–8):1369–1377

    Article  CAS  Google Scholar 

  • da Silva F et al (2019) Structural and Magnetic Properties of Spinel Ferrite Nanoparticles. J Nanosci Nanotechnol 19(8):4888–4902

    Article  CAS  Google Scholar 

  • Dai L et al (2015) Metal-free catalysts for oxygen reduction reaction. Chem Rev 115(11):4823–4892

    Article  CAS  Google Scholar 

  • De-León-Prado LE et al (2017) Synthesis and characterization of nanosized MgxMn1 − xFe2O4 ferrites by both sol-gel and thermal decomposition methods. J Magn Magn Mater 427:230–234

    Article  CAS  Google Scholar 

  • Elbeshir EIA (2018) Magnetic and thermal properties of CoFe2O4 nanoparticles for magnetic hyperthermia treatment. Int J Adv Appl Sci 5(8):34–36

    Article  Google Scholar 

  • Fariñas J et al (2018) Microwave-assisted solution synthesis, microwave sintering and magnetic properties of cobalt ferrite. J Eur Ceram Soc 38(5):2360–2368

    Article  CAS  Google Scholar 

  • Feldman D et al (2013) The 2013 international society for heart and lung transplantation guidelines for mechanical circulatory support: executive summary. J Hear Lung Transplant 32(2):157–187

    Article  Google Scholar 

  • Franco A Jr, e Silva F (2010) High temperature magnetic properties of cobalt ferrite nanoparticles. Appl Phys Lett 96(17):172505

    Article  CAS  Google Scholar 

  • George L et al (2017) Structural, dielectric, magnetic and optical properties of cerium substituted Ni-Zn mixed ferrite. Mater Sci Res India 14(2):133–139

    Article  CAS  Google Scholar 

  • Ghasemian Z, Shahbazi-Gahrouei D, Manouchehri S (2015) Cobalt zinc ferrite nanoparticles as a potential magnetic resonance imaging agent: an in vitro study. Avicenna J Med Biotechnol 7(2):64–68

    Google Scholar 

  • Gjorup FH et al (2018) Coercivity enhancement of strontium hexaferrite nano-crystallites through morphology controlled annealing. Materialia 4:203–210

    Article  Google Scholar 

  • Govindan B et al (2017) Designed synthesis of nanostructured magnetic hydroxyapatite based drug nanocarrier for anti-cancer drug delivery toward the treatment of human epidermoid carcinoma. Nanomaterials 7(6):138

    Article  CAS  Google Scholar 

  • Grindi B et al (2018) Microwave-assisted synthesis and magnetic properties of M-SrFe12O19 nanoparticles. J Magn Magn Mater 449:119–126

    Article  CAS  Google Scholar 

  • Gubin SP (2009) Magnetic nanoparticles. Wiley

    Google Scholar 

  • Gul I, Maqsood A (2008) Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route. J Alloy Compd 465(1–2):227–231

    Article  CAS  Google Scholar 

  • Gupta AK, Curtis AS (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 15(4):493–496

    Article  CAS  Google Scholar 

  • Hankare P et al (2010) Effect of zinc substitution on structural and magnetic properties of copper ferrite. J Alloy Compd 501(1):37–41

    Article  CAS  Google Scholar 

  • Harris VG (2012) Modern microwave ferrites. IEEE Trans Magn 48(3):1075–1104

    Article  CAS  Google Scholar 

  • Hernández-Gómez P et al (2018) Synthesis, structural characterization and broadband ferromagnetic resonance in Li ferrite nanoparticles. J Alloy Compd 765:186–192

    Article  CAS  Google Scholar 

  • Ichiyanagi Y et al (2007) Magnetic properties of Mg-ferrite nanoparticles. J Magn Magn Mater 310(2):2378–2380

    Article  CAS  Google Scholar 

  • Ishaque M et al (2010) Structural, electrical and dielectric properties of yttrium substituted nickel ferrites. Physica B 405(6):1532–1540

    Article  CAS  Google Scholar 

  • Jain AK, Singla RK (2011) An overview of microwave assisted technique: green synthesis. Webmed Centra, pp 1–15

    Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105(19):4065–4067

    Article  CAS  Google Scholar 

  • Jordan TB, Seen AJ, Jacobsen GE (2006) Levoglucosan as an atmospheric tracer for woodsmoke. Atmos Environ 40(27):5316–5321

    Article  CAS  Google Scholar 

  • Joshi S et al (2016) Nickel substitution induced effects on gas sensing properties of cobalt ferrite nanoparticles. J Alloy Compd 654:460–466

    Article  CAS  Google Scholar 

  • Kanagesan S et al (2016) Evaluation of antioxidant and cytotoxicity activities of copper ferrite (CuFe2O4) and zinc ferrite (ZnFe2O4) nanoparticles synthesized by sol-gel self-combustion method. Appl Sci 6(9):184

    Article  CAS  Google Scholar 

  • Katafuchi R et al (1998) Glomerular score as a prognosticator in IgA nephropathy: its usefulness and limitation. Clin Nephrol 49(1):1–8

    CAS  Google Scholar 

  • Kato H et al (2003) Lanthanoid endohedral metallofullerenols for MRI contrast agents. J Am Chem Soc 125(14):4391–4397

    Article  CAS  Google Scholar 

  • Kefeni KK, Msagati TA, Mamba BB (2017a) Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater Sci Eng B 215:37–55

    Article  CAS  Google Scholar 

  • Kefeni KK, Mamba BB, Msagati TA (2017b) Application of spinel ferrite nanoparticles in water and wastewater treatment: a review. Sep Purif Technol 188:399–422

    Article  CAS  Google Scholar 

  • Kim D et al (2011) Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents. Nanotechnology 22(15):155101

    Article  CAS  Google Scholar 

  • Kneller E, Luborsky F (1963) Particle size dependence of coercivity and remanence of single-domain particles. J Appl Phys 34(3):656–658

    Article  CAS  Google Scholar 

  • Konczykowski M et al (1992) Bean-livingston barriers a new source for magnetic irreversibility in YBa2Cu3O7 crystals. Physica C 194(1–2):155–156

    Article  CAS  Google Scholar 

  • Köseoğlu Y et al (2012) Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram Int 38(5):3625–3634

    Article  CAS  Google Scholar 

  • Kumar Y et al (2018) Efficient electrochemical detection of guanine, uric acid and their mixture by composite of nano-particles of lanthanides ortho-ferrite XFeO3 (X = La, Gd, Pr, Dy, Sm, Ce and Tb). J Electroanal Chem 830:95–105

    Article  CAS  Google Scholar 

  • Kurian M, Nair DS (2016) Effect of preparation conditions on nickel zinc ferrite nanoparticles: a comparison between sol–gel auto combustion and co-precipitation methods. J Saudi Chem Soc 20:S517–S522

    Article  CAS  Google Scholar 

  • Lassoued A et al (2018) Synthesis, structural, morphological, optical and magnetic characterization of iron oxide (α-Fe2O3) nanoparticles by precipitation method: effect of varying the nature of precursor. Physica E 97:328–334

    Article  CAS  Google Scholar 

  • Latorre-Esteves M et al (2009) Synthesis and characterization of carboxymethyl dextran-coated Mn/Zn ferrite for biomedical applications. J Magn Magn Mater 321(19):3061–3066

    Article  CAS  Google Scholar 

  • Leclerc N, Meux E, Lecuire J-M (2003) Hydrometallurgical extraction of zinc from zinc ferrites. Hydrometallurgy 70(1–3):175–183

    Article  CAS  Google Scholar 

  • Li B-W et al (2006) Enhanced microwave absorption in nickel/hexagonal-ferrite/polymer composites. Appl Phys Lett 89(13):132504

    Article  CAS  Google Scholar 

  • Li Y-W et al (2015) Preparation of magnetic resonance probes using one-pot method for detection of hepatocellular carcinoma. World J Gastroenterol 21(14):4275–4283

    Article  CAS  Google Scholar 

  • Liang W et al (2015) Development and validation of a nomogram for predicting survival in patients with resected non–small-cell lung cancer. J Clin Oncol 33(8):861–869

    Article  Google Scholar 

  • Lin Q et al (2019) Structural and magnetic studies of Mg substituted cobalt composite oxide catalyst Co1 − xMgxFe2O4. J Magn Magn Mater 469:89–94

    Article  CAS  Google Scholar 

  • Liu C, Zhang ZJ (2001) Size-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles. Chem Mater 13(6):2092–2096

    Article  CAS  Google Scholar 

  • Liu C et al (2000) Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J Am Chem Soc 122(26):6263–6267

    Article  CAS  Google Scholar 

  • Liu J et al (2001) Synthesis of nanosized nickel ferrites by shock waves and their magnetic properties. Mater Res Bull 36(13–14):2357–2363

    Article  CAS  Google Scholar 

  • Lu AH, Salabas EE, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244

    Article  CAS  Google Scholar 

  • Maaz K et al (2007) Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J Magn Magn Mater 308(2):289–295

    Article  CAS  Google Scholar 

  • Maity JP et al (2009) Effects of gamma irradiation on long-storage seeds of Oryza sativa (cv. 2233) and their surface infecting fungal diversity. Radiat Phys Chem 78(11): 1006–1010

    Google Scholar 

  • Maleki A, Hosseini N, Taherizadeh A (2018) Synthesis and characterization of cobalt ferrite nanoparticles prepared by the glycine-nitrate process. Ceram Int 44(7):8576–8581

    Article  CAS  Google Scholar 

  • Mathew DS, Juang R-S (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129(1–3):51–65

    Article  CAS  Google Scholar 

  • Mefford OT, Rinaldi C, Andrew JS (2018) Synthesis and surface functionalization of ferrite nanoparticles, in nanomagnetic actuation in biomedicine. CRC Press, pp 9–40

    Google Scholar 

  • Meng Y et al (2014) Synthesis of barium ferrite ultrafine powders by a sol–gel combustion method using glycine gels. J Alloy Compd 583:220–225

    Article  CAS  Google Scholar 

  • Meshram M et al (2004) Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J Magn Magn Mater 271(2–3):207–214

    Article  CAS  Google Scholar 

  • Mohan GR et al (1999) Dielectric properties of polycrystalline mixed nickel–zinc ferrites. Mater Lett 40(1):39–45

    Article  Google Scholar 

  • Nasrin S et al (2018) Effect of zinc substitution on structural, morphological and magnetic properties of cobalt nanocrystalline ferrites prepared by co-precipitation method. J Mater Sci Mater Electron 29(21):18878–18889

    Article  CAS  Google Scholar 

  • Ng SE (2018) Sol-gel synthesis and characterization of spinel ferrite nanoparticles. Tunku Abdul Rahman University College

    Google Scholar 

  • Nitin N et al (2004) Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J Biol Inorg Chem 9(6):706–712

    Article  CAS  Google Scholar 

  • Nosrati H et al (2018) Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. Int J Biol Macromol 108:909–915

    Article  CAS  Google Scholar 

  • Pardavi-Horvath M (2000) Microwave applications of soft ferrites. J Magn Magn Mater 215:171–183

    Article  Google Scholar 

  • Park D-H et al (2013) Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications. Prog Polym Sci 38(10–11):1442–1486

    Article  CAS  Google Scholar 

  • Perdomo CPF, Kiminami RHA, Garcia D (2019) Microwave assisted sintering of nanocristalline PMN-PT/CoFe2O4 prepared by rapid one pot pechini synthesis: Dielectric and magnetoelectric characteristics. Ceram Int 45(6):7906–7915

    Article  CAS  Google Scholar 

  • Petitt G, Forester D (1971) Mössbauer study of cobalt-zinc ferrites. Phys Rev B 4(11):3912

    Article  Google Scholar 

  • Pinho SL et al (2018) Synthesis and characterization of rare-earth orthoferrite LnFeO3 nanoparticles for bioimaging. Eur J Inorg Chem 2018(31):3570–3578

    Article  CAS  Google Scholar 

  • Pullar RC (2012) Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci 57(7):1191–1334

    Article  CAS  Google Scholar 

  • Qin J et al (2007) A high-performance magnetic resonance imaging T2 contrast agent. Adv Mater 19(14):1874–1878

    Article  CAS  Google Scholar 

  • Rana S et al (2007) On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: functionalization, conjugation and drug release kinetics. Acta Biomater 3(2):233–242

    Article  CAS  Google Scholar 

  • Rao BP et al (2006) Synthesis and magnetic studies of Ni-Zn ferrite nanoparticles. J Optoelectron Adv Mater 8(5):1703–1705

    CAS  Google Scholar 

  • Ravichandran M et al (2018) Biofunctionalized MnFe2O4@Au core–shell nanoparticles for pH-responsive drug delivery and hyperthermal agent for cancer therapy. Artif Cells Nanomedicine Biotechnol 46(sup3):S993–S1003

    Article  CAS  Google Scholar 

  • Respaud M et al (1998) Surface effects on the magnetic properties of ultrafine cobalt particles. Phys Rev B 57(5):2925

    Article  CAS  Google Scholar 

  • Ritchie ME et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47–e47

    Article  CAS  Google Scholar 

  • Sagadevan S, Chowdhury ZZ, Rafique RF (2018) Preparation and characterization of nickel ferrite nanoparticles via co-precipitation method. Mater Res 21(2)

    Google Scholar 

  • Samavati A et al (2016) Copper-substituted cobalt ferrite nanoparticles: structural, optical and antibacterial properties. Mater Express 6(6):473–482

    Article  CAS  Google Scholar 

  • Samoila P et al (2017) Remarkable catalytic properties of rare-earth doped nickel ferrites synthesized by sol-gel auto-combustion with maleic acid as fuel for CWPO of dyes. Appl Catal B 202:21–32

    Article  CAS  Google Scholar 

  • Sanpo N et al (2013a) Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater 9(3):5830–5837

    Article  CAS  Google Scholar 

  • Sanpo N, Wang J, Berndt CC (2013) Sol-gel synthesized copper-substituted cobalt ferrite nanoparticles for biomedical applications. In Journal of nano research. Trans Tech Publication

    Google Scholar 

  • Sapet C et al (2012) Magnetic nanoparticles enhance adenovirus transduction in vitro and in vivo. Pharm Res 29(5):1203–1218

    Article  CAS  Google Scholar 

  • Schick F et al (1997) Highly selective water and fat imaging applying multislice sequences without sensitivity to B1 field inhomogeneities. Magn Reson Med 38(2):269–274

    Article  CAS  Google Scholar 

  • Schoots IG et al (2015) Magnetic resonance imaging–targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol 68(3):438–450

    Article  Google Scholar 

  • Sertkol M et al (2009) Microwave synthesis and characterization of Zn-doped nickel ferrite nanoparticles. J Alloy Compd 486(1–2):325–329

    Article  CAS  Google Scholar 

  • Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324(6):903–915

    Article  CAS  Google Scholar 

  • Shete P et al (2014) Magnetic chitosan nanocomposite for hyperthermia therapy application: preparation, characterization and in vitro experiments. Appl Surf Sci 288:149–157

    Article  CAS  Google Scholar 

  • Shukla A et al (2018) Microwave assisted scalable synthesis of titanium ferrite nanomaterials. J Appl Phys 123(16):161411

    Article  CAS  Google Scholar 

  • Singhal S, Chandra K (2007) Cation distribution and magnetic properties in chromium-substituted nickel ferrites prepared using aerosol route. J Solid State Chem 180(1):296–300

    Article  CAS  Google Scholar 

  • Song H-W et al (2017) Shape-controlled syntheses of metal oxide nanoparticles by the introduction of rare-earth metals. Nanoscale 9(8):2732–2738

    Article  CAS  Google Scholar 

  • Srinivasan SY et al (2018) Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine 13(10):1221–1238

    Article  CAS  Google Scholar 

  • Srivastava R, Yadav B (2012) Ferrite materials: introduction, synthesis techniques, and applications as sensors. Int J Green Nanotechnol 4(2):141–154

    Article  CAS  Google Scholar 

  • Srivastava M, Chaubey S, Ojha AK (2009) Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol–gel and hydrothermal methods. Mater Chem Phys 118(1):174–180

    Article  CAS  Google Scholar 

  • Stamps J (2001) 16. Habitat selection by dispersers: integrating proximate and ultimate approaches

    Google Scholar 

  • Sugimoto M (1999) The past, present, and future of ferrites. J Am Ceram Soc 82(2):269–280

    Article  CAS  Google Scholar 

  • Tamura H, Matijevic E (1982) Precipitation of cobalt ferrites. J Colloid Interface Sci 90(1):100–109

    Article  CAS  Google Scholar 

  • Tan BK, Adya R, Randeva HS (2010) Omentin: a novel link between inflammation, diabesity, and cardiovascular disease. Trends Cardiovasc Med 20(5):143–148

    Article  CAS  Google Scholar 

  • Tourinho FA, Franck R, Massart R (1990) Aqueous ferrofluids based on manganese and cobalt ferrites. J Mater Sci 25(7):3249–3254

    Article  CAS  Google Scholar 

  • Uchida K et al (2013) Longitudinal spin Seebeck effect in various garnet ferrites. Phys Rev B 87(10):104412

    Article  CAS  Google Scholar 

  • Vaidyanathan G, Sendhilnathan S, Arulmurugan R (2007) Structural and magnetic properties of Co1 − xZnxFe2O4 nanoparticles by co-precipitation method. J Magn Magn Mater 313(2):293–299

    Article  CAS  Google Scholar 

  • Valenzuela R (2012) Novel applications of ferrites. Phys Res Int

    Google Scholar 

  • Verma A et al (2000) Magnetic properties of nickel–zinc ferrites prepared by the citrate precursor method. J Magn Magn Mater 208(1–2):13–19

    Article  CAS  Google Scholar 

  • Verma A et al (2005) Temperature dependence of electrical properties of nickel–zinc ferrites processed by the citrate precursor technique. Mater Sci Eng, B 116(1):1–6

    Article  CAS  Google Scholar 

  • Wang Y-XJ (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1(1):35

    Google Scholar 

  • Wang Z et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  • Wang L et al (2006) A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J Am Chem Soc 128(41):13358–13359

    Article  CAS  Google Scholar 

  • Wang L et al (2010) Controlled synthesis of magnetic spinel-type nickel ferrite nanoparticles by the interface reaction and hydrothermal crystallization. J Alloy Compd 490(1–2):656–660

    Article  CAS  Google Scholar 

  • Xing G et al (2008) The Strong MRI Relaxivity of Paramagnetic Nanoparticles. J Phys Chem B 112(20):6288–6291

    Article  CAS  Google Scholar 

  • Yadavalli T et al (2016) Magnetic hyperthermia heating of cobalt ferrite nanoparticles prepared by low temperature ferrous sulfate based method. AIP Adv 6(5):055904

    Article  CAS  Google Scholar 

  • Yanase M et al (1998a) Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Jpn J Cancer Res 89(7):775–782

    Article  CAS  Google Scholar 

  • Yanase M et al (1998b) Intracellular hyperthermia for cancer using magnetite cationic liposomes: an in vivo study. Jpn J Cancer Res 89(4):463–470

    Article  CAS  Google Scholar 

  • Yang H et al (2010) Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials 31(13):3667–3673

    Article  CAS  Google Scholar 

  • Yue Z et al (2004) Synthesis of nanocrystilline ferrites by sol–gel combustion process: the influence of pH value of solution. J Magn Magn Mater 270(1–2):216–223

    Article  CAS  Google Scholar 

  • Zeng N et al (2005) Impact of 1998–2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle. Geophys Res Lett 32(22)

    Google Scholar 

  • Zeng J et al (2010) Gold-based hybrid nanocrystals through heterogeneous nucleation and growth. Adv Mater 22(17):1936–1940

    Article  CAS  Google Scholar 

  • Zi Z et al (2009) Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles. J Magn Magn Mater 321(9):1251–1255

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Irfan Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Irfan Hussain, M. et al. (2020). Ferrite Nanoparticles for Biomedical Applications. In: Sharma, S., Javed, Y. (eds) Magnetic Nanoheterostructures. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-39923-8_7

Download citation

Publish with us

Policies and ethics