Skip to main content

Magnetic Nano- and Microparticles in Life Sciences and Medical Imaging

  • Chapter
  • First Online:
Magnetic Nanoheterostructures

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

The rapidly growing interest in biology and medicine is due to ongoing progress in noninvasive in vitro or in vivo diagnosis and imaging or treatment of various diseases, including monitoring of the survival, migration, and fate of transplanted cells over the long-term. This requires the use of contrast agents, drug delivery vehicles, and separation media often based on magnetic nanoparticles and/or microspheres. This chapter is going to describe approaches to their development at the Institute of Macromolecular Chemistry in Prague, the Czech Republic, during the last twenty-five years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amiri S, Shokrollahi H (2013) The role of cobalt ferrite magnetic nanoparticles in medical science. Mater Sci Eng C 33:1–8

    Article  CAS  Google Scholar 

  • Arruebo M, Fernández-Pacheco R, Velasco B, Marquina C, Arbiol J, Irusta S, Ibarra MR, Santamaría J (2007) Antibody-functionalized hybrid superparamagnetic nanoparticles. Adv Funct Mater 17:1473–1479

    Article  CAS  Google Scholar 

  • Babič M, Horák D, Trchová M, Jendelová P, Glogarová K, Lesný P, Herynek V, Hájek M, Syková E (2008) Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjug Chem 19:740–750

    Article  CAS  Google Scholar 

  • Babič M, Horák D, Jendelová P, Glogarová K, Herynek V, Trchová M, Likavčanová K, Hájek M, Syková E (2009) Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling. Bioconjug Chem 20:283–294

    Google Scholar 

  • Babič M, Horák D, Jendelová P, Herynek V, Proks V, Vaněček V, Syková E (2012) The use of dopamine-hyaluronate associate-coated maghemite nanoparticles to label cells. Int J Nanomed 7:1461–1474

    Article  Google Scholar 

  • Babič M, Schmiedtová M, Poledne R, Herynek V, Horák D (2015) In vivo monitoring of rat macrophages labeled with poly(L-lysine)-iron oxide nanoparticles. J Biomed Mater Res B 103:1141–1148

    Google Scholar 

  • Babič M, Horák D, Molčan M, Timko M (2017) Heat generation of surface-modified magnetic γ-Fe2O3 nanoparticles in applied alternating magnetic field. J Phys D 50:345002

    Article  CAS  Google Scholar 

  • Bailey FEJ, Koleske JV (1976) Poly(Ethylene Oxide). Academic Press, New York

    Google Scholar 

  • Baner J, Nilsson M, Mendel-Hartvig M, Landegren U (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res 26:5073–5078

    Article  CAS  Google Scholar 

  • Barry SE (2008) Challenges in the development of magnetic particles for therapeutic applications. Int J Hyperth 24:451–466

    Article  CAS  Google Scholar 

  • Bergna HE, Roberts WO (2005) Colloidal silica: fundamentals and applications. CRC Press, Santa Barbara

    Google Scholar 

  • Bílková Z, Slováková M, Lyčka A, Horák D, Lenfeld J, Turková J, Churáček J (2002a) Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly(HEMA-co-EDMA) and magnetic poly(HEMA-co-EDMA) microspheres. J Chromatogr B 770:25–34

    Article  Google Scholar 

  • Bílková Z, Slováková M, Horák D, Lenfeld J, Churáček J (2002b) Enzymes immobilized on magnetic carriers: efficient and selective system for protein modification. J Chromatogr B 770:177–181

    Article  Google Scholar 

  • Bílková Z, Slováková M, Minc N, Futterer C, Cecal R, Horák D, Beneš M, le Potier I, Przybylski M, Viovy J-L (2006) Functionalized magnetic micro- and nanoparticles: optimization and application to μ-chip tryptic digestion. Electrophoresis 27:1811–1824

    Google Scholar 

  • Bober P, Zasonska BA, Humpolíček P, Kuceková Z, Varga M, Horák D, Babayan B, Kazantseva N, Prokeš J, Stejskal J (2016) Polyaniline-maghemite based dispersion: electrical, magnetic properties and their cytotoxicity. Synth Metals 214:23–29

    Google Scholar 

  • Bolto BA (1996) Magnetic particle technology: desalination and water reuse applications. Desalination 106:137–143

    Google Scholar 

  • Bolto BA, Spurling TH (1991) Water purification with magnetic particles. Environ Monit Assess 19:139–143

    Article  CAS  Google Scholar 

  • Borisova T, Krisanova N, Borysov A, Sivko R, Ostapchenko L, Babič M, Horák D (2014) Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport. Beilstein J Nanotechnol 5:778–788

    Article  CAS  Google Scholar 

  • Čadková M, Metelka R, Holubová L, Horák D, Dvořáková V, Bílková Z, Korecká L (2015) Magnetic beads-based electrochemical immunosensor for monitoring of allergenic food proteins. Anal Biochem Anal Biochem 484:4–8

    Google Scholar 

  • Callister WD, Rethwisch DG (2006) Material science and engineering: an Introduction, 7th edn. Wiley, New York

    Google Scholar 

  • Cao X, Horák D, An Z, Plichta Z (2016) RAFT polymerization of N,N-dimethylacrylamide from magnetic poly(2-hydroxyethyl methacrylate) microspheres to suppress nonspecific protein adsorption. J Polym Sci Part A Polym Chem 54:1036–1043

    Google Scholar 

  • Chandrasekharan P, Maity D, Yong CX, Chuang KH, Ding J, Feng SS (2011) Vitamin E (d-α-tocopheryl-co-poly(ethylene glycol) 1000 succinate) micelles-superparamagnetic iron oxide nanoparticles for enhanced thermotherapy and MRI. Biomaterials 32:5663–5672

    Article  CAS  Google Scholar 

  • Chekina N, Horák D, Jendelová P, Trchová M, Beneš MJ, Hrubý M, Herynek V, Turnovcová K, Syková E (2011) Fluorescent magnetic nanoparticles for biomedical applications. J Mater Chem 21:7630–7639

    Article  CAS  Google Scholar 

  • Chen DH, Liao MH (2002) Preparation and characterization of YADH-bound magnetic nanoparticles. J Mol Catal B Enzym 16:283–291

    Article  CAS  Google Scholar 

  • Cherukuri P, Glazer ES, Curley SA (2010) Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev 62:339–345

    Article  CAS  Google Scholar 

  • Coey JMD (2010) Magnetism and magnetic materials. Cambridge University Press, Cambridge

    Google Scholar 

  • Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261

    Google Scholar 

  • Covaliu CI, Berger D, Matei C, Diamandescu L, Vasile E, Cristea C, Ionita V, Iovu H (2011) Magnetic nanoparticles coated with polysaccharide polymers for potential biomedical applications. J Nanopart Res 13:6169–6180

    Article  CAS  Google Scholar 

  • Dahl F, Baner J, Gullberg M, Mendel-Hartvig M, Landegren U, Nilsson M (2004) Circle-to-circle amplification for precise and sensitive DNA analysis. Proc Natl Acad Sci USA 101:4548–4553

    Article  CAS  Google Scholar 

  • Dave PN, Chopda LV (2014) Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotechnol 398569

    Google Scholar 

  • Davis MT, Lee TD, Ronk M, Hefta SA (1995) Microscale immobilized protease reactor columns for peptide mapping by liquid chromatography/mass spectral analysis. Anal Biochem 224:235–244

    Article  CAS  Google Scholar 

  • de la Escosura-Muñiz A, Plichta Z, Horák D, Merkoçi A (2015) Alzheimer’s disease biomarkers detection in human samples by efficient capturing through porous magnetic microspheres and labelling with electrocatalytic gold nanoparticles. Biosens Bioelectron 67:162–169

    Article  CAS  Google Scholar 

  • Dormer K, Seeney C, Lewelling K, Lian G, Gibson D, Johnson M (2005) Epithelial internalization of superparamagnetic nanoparticles and response to external magnetic field. Biomaterials 24:2061–2072

    Google Scholar 

  • Duan S, Wang R (2013) Bimetallic nanostructures with magnetic and noble metals and their physicochemical applications. Prog Nat Sci 23:113–126

    Article  Google Scholar 

  • Duncan R, Sat YN (1998) Tumour targeting by enhanced permeability and retention (EPR) effect. Ann Oncol 9(Suppl 2):39

    Google Scholar 

  • Dunorier H, Muller S (2007) Histone autoantibodies. In: Shoenfeld Y, Meroni P-L, Gershwin ME (eds) Autoantibodies, 2nd ed. Elsevier, Amsterdam, pp 169–177

    Google Scholar 

  • Elaissari A, Fessi H (2010) Reactive and highly submicron magnetic latexes for bionanotechnology applications. Macromol Symp 288:115–120

    Article  CAS  Google Scholar 

  • Fairbanks BD, Thissen H, Maurdev G, Pasic P, White JF, Meagher L (2014) Inhibition of protein and cell attachment on materials generated from N-(2-hydroxypropyl)acrylamide. Biomacromol 15:3259–3266

    Article  CAS  Google Scholar 

  • Faustino-Rocha A, Oliveira PA, Pinho-Oliveira J, Teixeira-Guedes C, Soares-Maia R, da Costa RG, Colaço B, Pires MJ, Colaço J, Ferreira R, Ginja M (2013) Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab Anim (NY) 42:217–224

    Article  Google Scholar 

  • Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2008) GLOBOCAN Cancer incidence and mortality worldwide. http://globocan.iarc.fr/factsheet.asp

  • Fleige G, Seeberger F, Laux D, Kresse M, Taupitz M, Pilgrim H, Zimmer C (2002) In vitro characterization of two different ultrasmall iron oxide particles for magnetic resonance cell tracking. Invest Radiol 37:482–488

    Google Scholar 

  • Flogel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, Schubert R, Schrader J (2008) In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118:140–148

    Article  Google Scholar 

  • Gallo J, Long NJ, Aboagye EO (2013) Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. Chem Soc Rev 42:7816–7833

    Article  CAS  Google Scholar 

  • Ghazanfari MR, Kashefi M, Shams SF, Jaafari MR (2016) Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochem Res Int 7840161

    Google Scholar 

  • Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor BC (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606

    Article  CAS  Google Scholar 

  • Goddard ED, Gruber JV (eds) (1999) Principles of science and technology in cosmetics and personal care. Marcel Dekker, New York

    Google Scholar 

  • Goss CJ (1988) Saturation magnetisation, coercivity and lattice parameter changes in the system Fe3O4-γ-Fe2O3, and their relationship to structure. Phys Chem Miner 16:164–171

    Google Scholar 

  • Greenwood R (2003) Review of the measurement of zeta potentials in concentrated aqueous suspensions using electroacoustics. Adv Colloid Interface Sci 106:55–81

    Article  CAS  Google Scholar 

  • Guneri ET, Bureau C, Champ J, Mottet G, Perez-Toralla K, Bidard F-C, Pierga JY, Malaquin L, Viovy JL, Descroix S (2014) Ephesia: combining microfluidics and proximity ligation assay to analyze protein-protein interactions in single circulating tumour cells: a new tool for pharmaceutical research and personalized medicine. In: 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, San Antonio 2014, pp 588–590

    Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Hafeli UO, Rifle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, Bardenstein D (2009) Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm 6:1417–1428

    Google Scholar 

  • Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742

    Google Scholar 

  • Harper S, Usenko C, Hutchison JE, Maddux BLS, Tanguay RL (2008) In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalisation and route of exposure. J Exp Nanosci 3:195–206

    Google Scholar 

  • Harris MJ, Zalipsky S (eds) (1997) Poly(ethylene glycol), chemistry and biological applications. American Chemical Society, Washington

    Google Scholar 

  • Hasany SF, Ahmed I, Rajan J, Rehman A (2012) Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. J Nanosci Nanotechnol 2:148–158

    Article  CAS  Google Scholar 

  • Heyn C, Bowen CV, Rutt BK, Foster PJ (2005) Detection threshold of single SPIO-labeled cells with FIESTA. Magn Reson Med 53:312–320

    Article  Google Scholar 

  • Hlídková H, Kotelnikov I, Pop-Georgievski O, Proks V, Horák D (2017) Antifouling peptide dendrimer surface of monodisperse magnetic poly(glycidyl methacrylate) microspheres. Macromolecules 50:1302–1311

    Article  CAS  Google Scholar 

  • Ho D, Sun X, Sun S (2011) Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44:875–882

    Article  CAS  Google Scholar 

  • Horák D (2001) Magnetic polyglycidylmethacrylate microspheres by dispersion polymerization. J Polym Sci A Polym Chem 39:3707–3715

    Article  Google Scholar 

  • Horák D, Hochel I (2005) Magnetic poly(glycidyl methacrylate) microspheres for ELISA Campylobacter jejuni detection in food. e-Polymers 5(060):2197–4586

    Google Scholar 

  • Horák D, Boháček J, Šubrt M (2000) Magnetic poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) microspheres by dispersion polymerization. J Polym Sci A Polym Chem 38:1161–1171

    Article  Google Scholar 

  • Horák D, Rittich B, Šafář J, Španová A, Lenfeld J, Beneš MJ (2001) Properties of RNase immobilized on magnetic poly(HEMA) microspheres. Biotechnol Prog 17:447–452

    Article  CAS  Google Scholar 

  • Horák D, Rittich B, Španová A, Beneš MJ (2005) Magnetic microparticulate carriers with immobilized selective ligands in DNA diagnostics. Polymer 46:1245–1255

    Article  CAS  Google Scholar 

  • Horák D, Babič M, Macková H, Beneš MJ (2007a) Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. J Sep Sci 30:1751–1772

    Article  CAS  Google Scholar 

  • Horák D, Rittich B, Španová A (2007b) Carboxyl-functionalized magnetic microparticle carrier for isolation and identification of DNA in dairy products. J Magn Magn Mater 311:249–254

    Google Scholar 

  • Horák D, Babič M, Jendelová P, Herynek V, Trchová M, Pientka Z, Pollert E, Hájek M, Syková E (2007c) D-mannose-modified iron oxide nanoparticles for stem cell labeling. Bioconjug Chem 18:635–644

    Article  CAS  Google Scholar 

  • Horák D, Pollert E, Trchová M, Kovářová J (2009) Magnetic poly(glycidyl methacrylate)-based microspheres prepared by suspension polymerization in the presence of modified La0.75Sr0.25MnO3 nanoparticles. Eur Polym J 45:1009–1016

    Google Scholar 

  • Horák D, Babič M, Jendelová P, Herynek V, Trchová M, Likavčanová K, Kapcalová M, Hájek M, Syková E (2009b) The effect of different magnetic nanoparticle coatings on the efficiency of stem cell labeling. J Magn Magn Mater 321:1539–1547

    Article  CAS  Google Scholar 

  • Horák D, Španová A, Tvrdíková J, Rittich B (2011) Streptavidin-modified magnetic poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) microspheres for selective isolation of DNA. Eur Polym J 47:1090–1096

    Google Scholar 

  • Horák D, Kučerová J, Korecká L, Jankovičová B, Palarčík J, Mikulášek P, Bílková Z (2012a) New monodisperse magnetic polymer microspheres biofunctionalized for enzyme catalysis and bioaffinity separations. Macromol Biosci 12:647–655

    Article  CAS  Google Scholar 

  • Horák D, Balonová L, Mann BF, Plichta Z, Hernychová L, Novotny MV, Stulík J (2012b) Use of magnetic hydrazide-modified polymer microspheres for enrichment of Francisella tularensis glycoproteins. Soft Matter 8:2775–2786

    Article  CAS  Google Scholar 

  • Horák D, Svobodová Z, Autebert J, Coudert B, Královec K, Plichta Z, Bílková Z, Viovy J-L (2013) Albumin-coated monodisperse magnetic poly(glycidyl methacrylate) microspheres with immobilized antibodies: application to the capture of epithelial cancer cells. J Biomed Mater Res 101A:23–32

    Google Scholar 

  • Horák D, Hlídková H, Hiraoui M, Taverna M, Proks V, Mázl Chánová E, Smadja C, Kučerová Z (2014) Monodisperse carboxyl-functionalized poly(ethylene glycol)-coated magnetic poly(glycidyl methacrylate) microspheres: application to the immunocapture of ß-amyloid peptides. Macromol Biosci 14:1590–1599

    Article  CAS  Google Scholar 

  • Horák D, Hlídková H, Trachtová Š, Šlouf M, Rittich B, Španová A (2015a) Evaluation of poly(ethylene glycol)-coated monodisperse magnetic poly(2-hydroxyethyl methacrylate) and poly(glycidyl methacrylate) microspheres by PCR. Eur Polym J 68:687–696

    Article  CAS  Google Scholar 

  • Horák D, Plichta Z, Starykovych M, Myronovskij S, Kit Y, Chopyak V, Stoika R (2015b) Calf thymus histone-conjugated magnetic poly(2-oxoethyl methacrylate) microspheres for affinity isolation of anti-histone IgGs from blood serum of patients with systemic lupus erythematosus. RSC Adv 5:63050–63055

    Article  CAS  Google Scholar 

  • Horák D, Hlídková H, Klyuchivska O, Grytsyna I, Stoika R (2017) PEGylation controls attachment and engulfment of monodisperse magnetic poly(2-hydroxyethyl methacrylate) microspheres by murine J774.2 macrophages. Appl Surf Sci 426:315–324

    Google Scholar 

  • Horák D, Hlídková H, Kit Y, Antonyuk V, Myronovsky S, Stoika R (2017) Magnetic poly(2-hydroxyethyl methacrylate) microspheres for affinity purification of monospecific anti-p 46 kDa/Myo1C antibodies for early diagnosis of multiple sclerosis patients. Biosci Rep 37

    Google Scholar 

  • Horák D, Pustovyy VI, Babinskiy AV, Palyvoda OM, Chekhun VF, Todor IN, Kuzmenko OI (2017c) Enhanced antitumor activity of surface-modified iron oxide nanoparticles and α-tocopherol derivative in a rat model of mammary gland carcinosarcoma. Int J Nanomed 12:4257–4268

    Article  Google Scholar 

  • Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnan KM (2015) Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7:11142–11154

    Article  CAS  Google Scholar 

  • Hughes MF, Long TC, Boyes WK, Ramabhadran R (2013) Whole-body retention and distribution of orally administered radiolabeled zerovalent iron nanoparticles in mice. Nanotoxicology 7:1064–1069

    Article  CAS  Google Scholar 

  • Jeong U, Teng X, Wang Y, Yang H, Xia Y (2006) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19:33–60

    Article  CAS  Google Scholar 

  • Jiráková K, Šeneklová M, Jirák D, Turnovcová K, Vosmanská M, Babič M, Horák D, Veverka P, Jendelová P (2016) The effect of magnetic nanoparticles on neuronal differentiation of induced pluripotent stem cell-derived neural precursors. Int J Nanomed 11:6267–6281

    Article  Google Scholar 

  • Jun Y, Seo J, Cheon J (2008) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41:179–189

    Article  CAS  Google Scholar 

  • Justin C, Philip SA, Samrot AV (2017) Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. Appl Nanosci 7:463–475

    Article  CAS  Google Scholar 

  • Kammler HK, Mädler L, Pratsinis SE (2001) Flame synthesis of nanoparticles. Chem Eng Technol 24:583–596

    Article  CAS  Google Scholar 

  • Knobel M, Nunes WC, Socolovsky LM, De Biasi E, Vargas JM, Denardin JC (2008) Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol 8:2836–2857

    Article  CAS  Google Scholar 

  • Koneracká M, Kopčanský P, Timko M, Ramchand CN, de Sequeira A, Trevan M (2002) Direct binding procedure of proteins and enzymes to fine magnetic particles. J Mol Catal B Enzym 18:13–18

    Google Scholar 

  • Kontogeorgis GM, Kiil S (2016) Colloid stability—Part I. In: Introduction to applied colloid and surface chemistry. Wiley, Chichester

    Google Scholar 

  • Korecká L, Ježová J, Bílková Z, Beneš M, Horák D, Hradcová O, Slováková M, Viovy J-L (2005) Magnetic enzyme reactors for isolation and study of heterogeneous glycoproteins. J Magn Magn Mater 293:349–357

    Article  CAS  Google Scholar 

  • Kostiv U, Patsula V, Šlouf M, Pongrac I, Škokić S, Radmilović M, Pavičić I, Vinković Vrček I, Gajović S, Horák D (2017) Physico-chemical characteristics, biocompatibility, and MRI applicability of novel monodisperse PEG-modified magnetic Fe3O4 & SiO2 core-shell nanoparticles. RSC Adv 7:8786–8797

    Article  CAS  Google Scholar 

  • Koubková J, Müller P, Hlídková H, Plichta Z, Proks V, Vojtěšek B, Horák D (2014) Magnetic poly(glycidyl methacrylate) microspheres for capture of proteins. New Biotechnol 31:482–491

    Google Scholar 

  • Křížová J, Španová A, Rittich B, Horák D (2005) Magnetic hydrophilic methacrylate-based polymer microspheres for genomic DNA isolation. J Chromatogr A 1064:247–253

    Article  CAS  Google Scholar 

  • Kuan W-C, Horák D, Plichta Z, Lee W-C (2014) Immunocapture of CD133-positive cells from human cancer cell lines by using monodisperse magnetic poly(glycidyl methacrylate) microspheres containing amino groups. Mater Sci Eng C 34:193–200

    Article  CAS  Google Scholar 

  • Kwon SG, Piao Y, Park J, Angappane S, Jo Y, Hwang NM, Park JG, Hyeon T (2007) Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J Am Chem Soc 129:12571–12584

    Article  CAS  Google Scholar 

  • Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, Lacroix G, Hoet P (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:14

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Google Scholar 

  • Levison PR, Badger SE, Hathi P, Davies MJ, Bruce IJ, Grimm V (1998) New approaches to the isolation of DNA by ion-exchange chromatography. J Chromatogr A 1(827):337–344

    Article  Google Scholar 

  • Lewis AL (2000) Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf B 18:261–275

    Article  CAS  Google Scholar 

  • Macková H, Proks V, Horák D, Kučka J, Trchová M (2011) Magnetic poly(N-propargylacrylamide) microspheres: preparation by precipitation polymerization and use in model click reactions. J Polym Sci A Polym Chem 49:4820–4829

    Google Scholar 

  • Macková H, Horák D, Petrovský E, Kovářová J (2013) Magnetic hollow poly(N-isopropylacrylamide-co-N,N′-methylenebisacrylamide-co-glycidyl acrylate) particles prepared by inverse emulsion polymerization. Colloid Polym Sci 291:205–213

    Google Scholar 

  • Macková H, Horák D, Donchenko GV, Andrijaka VI, Palyvoda OM, Chernishov VI, Chekhun VF, Todor IN, Kuzmenko OI (2015) Colloidally stable surface-modified iron oxide nanoparticles: preparation, characterization and anti-tumor activity. J Magn Magn Mater 380:125–131

    Google Scholar 

  • Mahmoudi M, Sahraian MA, Shokrgozar MA, Laurent S (2011a) Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of multiple sclerosis. ACS Chem Neurosci 2:118–140

    Google Scholar 

  • Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M (2011) Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 5:7263–7276

    Google Scholar 

  • Majewski P, Thierry B (2007) Functionalized magnetite nanoparticles—synthesis, properties, and bio-applications. Crit Rev Solid State Mater Sci 32:203–215

    Article  CAS  Google Scholar 

  • May CA (ed) (1988) Epoxy resins chemistry and technology, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Møller P (2005) Genotoxicity of environmental agents assessed by the alkaline comet assay. Basic Clin Pharmacol Toxicol 96(Suppl 1):1–42

    Google Scholar 

  • Moskvin M, Babič M, Reis S, Cruz MM, Ferreira LP, Deus Carvalho M, Costa Lima SA, Horák D (2018) Biological evaluation of surface-modified magnetic nanoparticles as a platform for colon cancer cell theranostics. Colloids Surf B 161:35–41

    Google Scholar 

  • Narain R (ed) (2011) Engineered carbohydrate-based materials for biomedical applications: polymers, surfaces, dendrimers, nanoparticles and hydrogels. Wiley, Hoboken

    Google Scholar 

  • Narayan R (ed) (2009) Biomedical materials. Springer, New York

    Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Novotna L, Emmerova T, Horak D, Kucerova Z, Ticha M (2010) Iminodiacetic acid-modified magnetic poly(2-hydroxyethyl methacrylate)-based polymer microspheres for phosphopeptide enrichment. J Chromatogr A 1217:8032–8040

    Article  CAS  Google Scholar 

  • Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C, Graeser M, Kaethner C, Lüdtke-Buzug K, Medimagh H, Stelzner J, Buzug TM, Barkhausen J, Vogt FM, Haegele J (2015) Magnetic particle imaging: current developments and future directions. Int J Nanomed 10:3097–3114

    Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D—Appl Phys 36:167–181

    Article  Google Scholar 

  • Papell SS (1965) Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles, US Pat. 3,215,572

    Google Scholar 

  • Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  CAS  Google Scholar 

  • Park K, Lee S, Kang E, Kim K, Choi K, Kwon IC (2009) New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater 19:1553–1566

    Article  CAS  Google Scholar 

  • Parton E, Palma RD, Borghs G (2007) Biomedical applications using magnetic nanoparticles. Solid State Technol 50:47–50

    CAS  Google Scholar 

  • Patsula V, Petrovský E, Kovářová J, Konefal R, Horák D (2014) Monodisperse superparamagnetic nanoparticles by thermolysis of Fe(III) oleate and mandelate complexes. Colloid Polym Sci 292:2097–2110

    Article  CAS  Google Scholar 

  • Patsula V, Moskvin M, Dutz S, Horák D (2016) Size-dependent magnetic properties of iron oxide nanoparticles. J Phys Chem Solids 88:24–30

    Article  CAS  Google Scholar 

  • Pillai V, Kumar P, Hou MJ, Ayyub P, Shah DO (1995) Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors. Adv Colloid Interface Sci 55:241–269

    Article  CAS  Google Scholar 

  • Pongrac I, Dobrivojevic M, Brkic Ahmed L, Babič M, Šlouf M, Horák D, Gajovic S (2016a) Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles. Beilstein J Nanotechnol 7:926–936

    Article  CAS  Google Scholar 

  • Pongrac I, Pavičić I, Milić M, Brkić Ahmed L, Babič M, Horák D, Vrček IV, Gajović S (2016b) Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles. Int J Nanomed 11:1701–1715

    CAS  Google Scholar 

  • Přikryl P, Horák D, Tichá M, Kučerová Z (2006) Magnetic IDA-modified hydrophilic methacrylate-based polymer microspheres for IMAC protein separation. J Sep Sci 29:2541–2549

    Article  CAS  Google Scholar 

  • Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19:6274–6293

    Article  CAS  Google Scholar 

  • Qiu Y, Wang F, Liu Y-M, Wang W, Chu L-Y, Wang H-L (2015) Microfluidic-based fabrication, characterization and magnetic functionalization of microparticles with novel internal anisotropic structure. Sci Rep 5:13060

    Google Scholar 

  • Ramimoghadam D, Bagheri S, Hamid SBA (2014) Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J Magn Magn Mater 368:207–229

    Article  CAS  Google Scholar 

  • Rao SV, Anderson KW, Bachas LG (1998) Oriented immobilization of proteins. Microchim Acta 128:127–143

    Article  CAS  Google Scholar 

  • Reymond F, Vollet C, Plichta Z, Horák D (2013) Fabrication and characterization of tosyl-activated magnetic and non-magnetic monodisperse microspheres for use in microfluic-based ferritin immunoassay. Biotechnol Progr 29:532–542

    Article  CAS  Google Scholar 

  • Rittich B, Španová A, Ohlashenyy Yu, Lenfeld J, Rudolf I, Horák D, Beneš MJ (2002) Characterization of deoxyribonuclease I immobilized on magnetic hydrophilic polymer particles. J Chromatogr B 774:25–31

    Article  CAS  Google Scholar 

  • Roca AG, Morales MP, O’Grady K, Serna CJ (2006) Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology 17:2783–2788

    Article  CAS  Google Scholar 

  • Rotková J, Šuláková R, Korecká L, Zdražilová P, Jandová M, Lenfeld J, Horák D, Bílková Z (2009) Laccase immobilized on magnetic carriers for biotechnology applications. J Magn Mater 321:1335–1340

    Google Scholar 

  • Sakai-Kato K, Kato M, Toyooka T (2003) Creation of an on-chip enzyme reactor by encapsulating trypsin in sol-gel on a plastic microchip. Anal Chem 75:388–393

    Article  CAS  Google Scholar 

  • Salih T, Ahlford A, Nilsson M, Plichta Z, Horák D (2016) Streptavidin-modified monodisperse magnetic poly(2-hydroxyethyl methacrylate) microspheres as solid support in DNA-based molecular protocols. Mater Sci Eng C 61:362–367

    Article  CAS  Google Scholar 

  • Saravanan P, Alam S, Mathur GN (2003) Comparative study on the synthesis of γ-Fe2O3 and Fe3O4 nanocrystals using high-temperature solution-phase technique. J Mater Sci Lett 22:1283–1285

    Article  CAS  Google Scholar 

  • Shang H, Chang WS, Kan S, Majetich SA, Lee GU (2006) Synthesis and characterization of paramagnetic microparticles through emulsion-templated free radical polymerization. Langmuir 22:2516–2522

    Article  CAS  Google Scholar 

  • Sharma SK, Mudhoo A (eds) (2011) A handbook of applied biopolymer technology: synthesis, degradation and applications. Royal Society Chemistry, Cambridge

    Google Scholar 

  • Shubayev VI, Pisanic TR, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477

    Article  CAS  Google Scholar 

  • Shubhra QTH, Kardos AF, Feczkó T, Mackova H, Horák D, Tóth J, Gyenis J (2014) Co-encapsulation of human serum albumin and superparamagnetic iron oxide in PLGA nanoparticles: Part I. Effect of process variables on the mean size of magnetic PLGA nanoparticles. J Microencapsul 31:147–155

    Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EI (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  Google Scholar 

  • Siow WX, Chang Y-T, Babič M, Lu Y-C, Horák D, Ma Y-H (2018) Interaction of poly(L-lysine) coating and heparan sulfate proteoglycan modulate magnetic nanoparticle uptake in tumor cells. Int J Nanomed 13:1693–1706

    Article  CAS  Google Scholar 

  • Slavin S, Burns J, Haddleton DM, Becer CR (2011) Synthesis of glycopolymers via click reactions. Eur Polym J 47:435–446

    Article  CAS  Google Scholar 

  • Španová A, Rittich B, Horák D, Lenfeld J, Prodělalová J, Sučiková J, Štrumcová S (2003) Immunomagnetic separation and detection of Salmonella cells using newly designed magnetic carriers. J Chromatogr A 1009:215–221

    Article  CAS  Google Scholar 

  • Strehl C, Maurizi L, Gaber T, Hoff P, Broschard T, Poole AR, Hofmann H, Buttgereit F (2016) Modification of the surface of superparamagnetic iron oxide nanoparticles to enable their safe application in humans. Int J Nanomed 11:5883–5896

    Article  CAS  Google Scholar 

  • Sun R, Dittrich J, Le-Huu M, Mueller MM, Bedke J, Kartenbeck J, Lehman JK, Krueger R, Bock M, Huss R, Seliger C, Grone HJ, Misselwitz B, Semmler W, Kiessling F (2005) Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells: a comparison. Invest Radiol 40:504–513

    Google Scholar 

  • Svobodová Z, Jankovičová B, Plichta Z, Horák D, Bílková Z (2018) Evaluation of colorimetric BCA-based quantification of hydrazide groups on magnetic particles. J Spectrosc 5492893

    Google Scholar 

  • Tadros T, Tadros TF (eds) (2006) General Principles of colloid stability and the role of surface forces, in colloid stability: the role of surface forces, Part I, vol 1. Wiley-VCH, Weinheim

    Google Scholar 

  • Tanyolac D, Ozdural AR (2000) A new low cost magnetic material: magnetic polyvinylbutyral microbeads. React Funct Polym 43:279–286

    Article  CAS  Google Scholar 

  • Teja AS, Koh PY (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Ch 55:22–45

    Article  CAS  Google Scholar 

  • Teoh WY, Amal R, Mädler L (2010) Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale 2:1324–1347

    Article  CAS  Google Scholar 

  • Thanh NTK (ed) (2018) Clinical applications of magnetic nanoparticles. CRC Press

    Google Scholar 

  • Thurman JM, Serkova NJ (2013) Nano-sized contrast agents to non-invasively detect renal inflammation by magnetic resonance imaging. Adv Chronic Kidney Dis 20:488–499

    Article  Google Scholar 

  • Torti SV, Torti FM (2013) Iron and cancer: more ore to be mined. Nat Rev Cancer 13:342–355

    Google Scholar 

  • Trachtová Š, Španová A, Horák D, Kozáková H, Rittich B (2016) Real-time polymerase chain reaction as a tool for evaluation of magnetic poly(glycidyl methacrylate)-based microspheres in molecular diagnostics. Curr Pharm Des 22:639–646

    Article  CAS  Google Scholar 

  • Trojánek Z, Kovařík A, Španová A, Marošiová K, Horák D, Rittich B (2018) Application of magnetic polymethacrylate-based microspheres for the isolation of DNA from raw vegetables and processed foods of plant origin. J Food Process Preserv 42:e13384

    Article  CAS  Google Scholar 

  • Ugelstad J (1984) Monodisperse polymer particles and dispersions thereof, US Patent 4,459,378

    Google Scholar 

  • Umut E (2013) Surface modification of nanoparticles used in biomedical applications. In: Aliofkhazraei M (ed) Modern surface engineering treatments. InTech

    Google Scholar 

  • Uthaman S, Lee SJ, Cherukula K, Cho CS, Park IK (2015) Polysaccharide-coated magnetic nanoparticles for imaging and gene therapy. Biomed Res Int 959175

    Google Scholar 

  • Vohlídal J (1995) Makromolekulární chemie. Karolinum, Prague, Czech Republic

    Google Scholar 

  • Voinov MA, Sosa Pagán JO, Morrison E, Smirnova TI, Smirnov AI (2011) Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc 133:35–41

    Article  CAS  Google Scholar 

  • Vrček IV, Pavičić I, Crnković T, Jurašin D, Babič M, Horák D, Lovrić M, Ferhatović L, Ćurlin M, Gajović S (2015) Does surface coating of metallic nanoparticles modulate their interferences with in vitro assays? RSC Adv 5:70787–70807

    Article  CAS  Google Scholar 

  • Wang W, Dong H, Pacheco V, Willbold D, Zhang Y, Offenhaeusser A, Hartmann R, Weirich TE, Ma P, Krause H, Gu Z (2011) Relaxation behavior study of ultrasmall superparamagnetic iron oxide nanoparticles at ultralow and ultrahigh magnetic fields. J Phys Chem B 115:14789–14793

    Article  CAS  Google Scholar 

  • Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J (1989) Superparamagnetic iron-oxide—pharmacokinetics and toxicity. Am J Roentgenol 152:167–173

    Article  CAS  Google Scholar 

  • Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415

    Article  CAS  Google Scholar 

  • Xu C, Yuan Z, Kohler N, Kim J, Chung MA, Sun S (2009) FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J Am Chem Soc 131:15346–15351

    Article  CAS  Google Scholar 

  • Yan J, Horák D, Lenfeld J, Hammond M, Kamali-Moghaddam M (2013) A tosyl-activated magnetic bead cellulose as solid support for sensitive protein detection. J Biotechnol 167:235–240

    Article  CAS  Google Scholar 

  • Yang J, Kopeček J (2015) Backbone degradable and coiled-coil based macromolecular therapeutics. In: Gu Z (ed) Bioinspired and biomimetic polymer systems for drug and gene delivery. Wiley-WCH, Weinheim

    Google Scholar 

  • Yi DK, Lee SS, Papaefthymiou GC, Ying JY (2006) Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chem Mater 18:614–619

    Article  CAS  Google Scholar 

  • Zasonska BA, Boiko N, Horák D, Klyuchivska O, Macková H, Beneš M, Babič M, Trchová M, Hromádková J, Stoika R (2012) The use of hydrophilic poly(N,N-dimethylacrylamide) grafted from magnetic γ-Fe2O3 nanoparticles to promote engulfment by mammalian cells. J Biomed Nanotechnol 9:479–491

    Google Scholar 

  • Zasonska BA, Bober P, Jošt P, Petrovský E, Boštík P, Horák D (2016) Magnetoconductive maghemite core/polyaniline shell nanoparticles as promising tools for biomedical applications. Colloids Surf B Biointerfaces 141:382–389

    Article  CAS  Google Scholar 

  • Zasońska BA, Boiko N, Klyuchivska O, Trchová M, Petrovský E, Stoika R, Horák D (2013a) Silica-coated γ-Fe2O3 nanoparticles: preparation and engulfment by mammalian macrophages. J Nanopharm Drug Deliv 1:182–192

    Article  Google Scholar 

  • Zasońska BA, Boiko N, Horák D, Klyuchivska O, Macková H, Beneš MJ, Babič M, Trchová M, Hromádková J, Stoika R (2013b) The use of hydrophilic poly(N,N-dimethylacrylamide) for promoting engulfment of magnetic γ-Fe2O3 nanoparticles by mammalian cells. J Biomed Nanotechnol 9:479–491

    Article  Google Scholar 

  • Zasońska BA, Líšková A, Kuricová M, Tulinská J, Pop-Georgievski O, Čiampor F, Vávra I, Dušinská M, Ilavská S, Horváthová M, Horák D (2016) Functionalized porous silica and maghemite core-shell nanoparticles for applications in medicine: design, synthesis, and immunotoxicity. Croat Med J 57:165–179

    Article  CAS  Google Scholar 

  • Zhang Q, Rajan SS, Tyner KM, Casey BJ, Dugard CK, Jones Y, Paredes AM, Clingman CS, Howard PC, Goering PL (2016) Effects of iron oxide nanoparticles on biological responses and MR imaging properties in human mammary healthy and breast cancer epithelial cells. J Biomed Mater Res B 104:1032–1042

    Article  CAS  Google Scholar 

  • Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci l25:677–710

    Google Scholar 

  • Zuo Y, Hoigné J (1992) Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes. Environ Sci Technol 26:1014–1022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank all my colleagues and co-authors who have helped in carrying out the research and the Institute of Macromolecular Chemistry and the Czech Science Foundation (No. 20-02177J) for support. Special thanks belong to Dr. V. Patsula for drawing some pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Horák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Horák, D. (2020). Magnetic Nano- and Microparticles in Life Sciences and Medical Imaging. In: Sharma, S., Javed, Y. (eds) Magnetic Nanoheterostructures. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-39923-8_5

Download citation

Publish with us

Policies and ethics