A Streamlined Pipeline to Enable the Semantic Exploration of a Bookstore

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1177)


Searching in a library or book catalog is a recurrent task for researchers and common users alike. Thanks to semantic enrichment techniques, such as named-entity recognition and linking, texts may be automatically associated with entities in some reference knowledge graph(s). The association of a corpus of texts with a knowledge graph opens up the way to searching/exploring using novel paradigms. We present a pipeline that uses semantic enrichment and knowledge graph visualization techniques to enable the semantic exploration of an existing text corpus. The pipeline is meant to be ready for use and consists of existing free software tools and free software code contributed by us. We are developing and testing the pipeline on the field, by using it to access the catalog of a bookstore specialized in ancient Rome history.


Semantic enrichment Knowledge graph Book catalog Semantic web Linked data Pipeline 


  1. 1.
    Bikakis, N., Sellis, T.: Exploration and visualization in the web of big linked data: a survey of the state of the art. arXiv preprint. arXiv:1601.08059 (2016)
  2. 2.
    Bolina, M.: Yewno discover. Nord. J. Inf. Lit. High. Educ. 11(1) (2019).
  3. 3.
    Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 concepts and abstract syntax. W3C REC 25 February 2014.
  4. 4.
    Dadzie, A.S., Rowe, M.: Approaches to visualising linked data: a survey. Semant. Web 2(2), 89–124 (2011) CrossRefGoogle Scholar
  5. 5.
    Harris, S., et al.: SPARQL 1.1 query language. W3C REC 21 March 2013.
  6. 6.
    Keim, D.A.: Information visualization and visual data mining. IEEE Trans. Visual. Comput. Graph. 8(1), 1–8 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lefrançois, M., Zimmermann, A., Bakerally, N.: A SPARQL extension for generating RDF from heterogeneous formats. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 35–50. Springer, Cham (2017). Scholar
  8. 8.
    Marie, N., Gandon, F.: Survey of linked data based exploration systems (2014)Google Scholar
  9. 9.
    Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvisticae Investigationes 30(1), 3–26 (2007)CrossRefGoogle Scholar
  10. 10.
    Nisheva-Pavlova, M., Alexandrov, A.: GLOBDEF: a framework for dynamic pipelines of semantic data enrichment tools. In: Garoufallou, E., Sartori, F., Siatri, R., Zervas, M. (eds.) MTSR 2018. CCIS, vol. 846, pp. 159–168. Springer, Cham (2019). Scholar
  11. 11.
    Ristoski, P., Paulheim, H.: Semantic web in data mining and knowledge discovery: a comprehensive survey. J. Web Semant. 36, 1–22 (2016)CrossRefGoogle Scholar
  12. 12.
    Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Trans. Knowl. Data Eng. 27(2), 443–460 (2014)CrossRefGoogle Scholar
  13. 13.
    Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of 1996 IEEE Symposium on Visual Languages, pp. 336–343 (1996)Google Scholar
  14. 14.
    Şimşek, U., Kärle, E., Fensel, D.: Machine readable web APIs with action annotations. In: Proceedings of SEMANTiCS 2018, pp. 255–261. Elsevier (2018)Google Scholar
  15. 15.
    Speicher, S., Arwe, J., Malhotra, A.: Linked data platform 1.0. W3C Recommendation 26 February 2015 (2015).

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Sapienza Università di RomaRomeItaly

Personalised recommendations