Skip to main content

Nanocitation: Complete and Interoperable Citations of Nanopublications

Part of the Communications in Computer and Information Science book series (CCIS,volume 1177)

Abstract

Nanopublication is a data publishing model which has a great potential for the representation of scientific results allowing interoperability, data integration and exchange of scientific findings. But this model suffer of the lack of an appropriate standard methodology to produce complete and interoperable citations providing both data identification and access. In this paper we introduce nanocitation, a framework to automatically get human-readable text-snippet snippet and machine-readable citations of nanopublications.

Keywords

  • Nanopublication
  • Data citation
  • DisGeNET

The full paper was presented at TPDL 2019 [5].

The work was partially funded by the “Computational Data Citation” (CDC) STARS-StG project of the University of Padua. The work was also partially funded by the EXAMODE (contract n. 825292) part of the H2020-ICT-2018-2 call of the European Commission.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-39905-4_18
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-39905-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.

Notes

  1. 1.

    http://npmonitor.inn.ac/ accessed on 09/25/2019.

References

  1. Out of Cite, Out of Mind: The Current State of Practice, Policy, and Technology for the Citation of Data, vol. 12. CODATA-ICSTI Task Group on Data Citation Standards and Practices, September 2013

    Google Scholar 

  2. DataCite Metadata Schema Documentation for the Publication and Citation of Research Data, Version 4.0. Technical report, DataCite Metadata Working Group (2016)

    Google Scholar 

  3. Borgman, C.L.: Big Data, Little Data, No Data. MIT Press, Cambridge (2015)

    CrossRef  Google Scholar 

  4. Buneman, P., Davidson, S.B., Frew, J.: Why data citation is a computational problem. Commun. ACM (CACM) 59(9), 50–57 (2016)

    CrossRef  Google Scholar 

  5. Fabris, E., Kuhn, T., Silvello, G.: A framework for citing nanopublications. In: Doucet, A., Isaac, A., Golub, K., Aalberg, T., Jatowt, A. (eds.) TPDL 2019. LNCS, vol. 11799, pp. 70–83. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30760-8_6

    CrossRef  Google Scholar 

  6. FORCE-11: Data Citation Synthesis Group: Joint Declaration of Data Citation Principles. FORCE11, San Diego, CA, USA (2014)

    Google Scholar 

  7. Groth, P., Gibson, A., Velterop, J.: The anatomy of a nanopublication. Inf. Serv. Use 30(1–2), 51–56 (2010)

    CrossRef  Google Scholar 

  8. Hey, T., Tansley, S., Tolle, K. (eds.): The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, Redmond (2009)

    Google Scholar 

  9. Kuhn, T., et al.: Decentralized provenance-aware publishing with nanopublications. PeerJ Comput. Sci. 2, e78 (2016)

    CrossRef  Google Scholar 

  10. Lane, L., et al.: Nextprot: a knowledge platform for human proteins. Nucleic Acids Res. 40(Database-Issue), 76–83 (2012)

    CrossRef  Google Scholar 

  11. Mons, B., et al.: The value of data. Nat. Genet. 43(4), 281–283 (2011)

    CrossRef  Google Scholar 

  12. Pico, A.R., et al.: WikiPathways: pathway editing for the people. PLoS Biol. 22, e184 (2008)

    CrossRef  Google Scholar 

  13. Piñero, J., et al.: DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45(D1), D833–D839 (2017)

    CrossRef  Google Scholar 

  14. Silvello, G.: Learning to cite framework: how to automatically construct citations for hierarchical data. J. Am. Soc. Inf. Sci. Technol. (JASIST) 68(6), 1505–1524 (2017)

    CrossRef  Google Scholar 

  15. Silvello, G.: Theory and practice of data citation. J. Am. Soc. Inf. Sci. Technol. (JASIST) 69(1), 6–20 (2018)

    CrossRef  Google Scholar 

  16. Wu, Y., Alawini, A., Davidson, S.B., Silvello, G.: Data citation: giving credit where credit is due. In: Proceedings of the 2018 International Conference on Management of Data, SIGMOD Conference 2018, pp. 99–114. ACM Press, New York (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Fabris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Fabris, E., Kuhn, T., Silvello, G. (2020). Nanocitation: Complete and Interoperable Citations of Nanopublications. In: Ceci, M., Ferilli, S., Poggi, A. (eds) Digital Libraries: The Era of Big Data and Data Science. IRCDL 2020. Communications in Computer and Information Science, vol 1177. Springer, Cham. https://doi.org/10.1007/978-3-030-39905-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39905-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39904-7

  • Online ISBN: 978-3-030-39905-4

  • eBook Packages: Computer ScienceComputer Science (R0)