Skip to main content

High Gain Patch Array Antenna for 5G Network Communication and IoT Applications

  • 487 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1122)

Abstract

A new array of patch antenna is proposed in this paper for upcoming 5G networks and IoT applications. The operating frequencies are optimized at 4 different bands ranging from 30 GHz to 50 GHz. Such design is suitable for 5G communication applications for Multiple Input Multiple Output (MIMO) systems. The proposed antenna has a simple structure and it consists of two patches separated by a distance which can be optimized for required different types of parametric combinations. A single point feed is divided by using the Wilkinson’s power divider model to split or combine the power transmitted to or the power received from two patch elements respectively. The designed array has shown comparatively high performance and better directional radiation patterns. The four operating frequencies are observed at 31.0 GHz, 36.4 GHz, 43.4 GHz and 48.5 GHz with simulated return losses observed with approximate values at −44.9 dB, −33.4 dB, −29.2 dB and −23.9 dB respectively. The simulated results show that the efficiency varies from 18% to 23%. The VSWR is very close to unity indicating a good performance of the antenna array. The performance is encouraging and the array antenna is suitable for the applications in upcoming 5G network communication and other IoT applications.

Keywords

  • Patch antenna
  • 5G
  • IoT
  • High directivity
  • High gain

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-39875-0_13
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-39875-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Andriamiharivolamenaa, T., Lemaître-Augera, P., Tedjinia, S., Tirard, F.: Compact planar monopole antenna for wearable wireless applications. C. R. Physique 16(9), 851–861 (2015). https://doi.org/10.1016/j.crhy.2015.07.008

    CrossRef  Google Scholar 

  2. Chenga, H., Ebadib, S., Renc, X., Gonga, X.: Wireless passive high-temperature sensor based on multifunctional reflective patch antenna up to 1050 degrees centigrade. Sens. Actuators A Physical 222, 204–211 (2015). https://doi.org/10.1016/j.sna.2014.11.010

    CrossRef  Google Scholar 

  3. Emadeddin, A., Shad, S., Rahimian, Z., Hassani, H.R.: High mutual coupling reduction between microstrip patch antennas using novel structure. Int. J. Electron. Commun. (AEÜ) 71, 152–156 (2017). https://doi.org/10.1016/j.aeue.2016.10.017

    CrossRef  Google Scholar 

  4. Kishore, N., Upadhyay, G., Tripathi, V.S., Prakash, A.: Dual band rectangular patch antenna array with defected ground structure for ITS application. Int. J. Electron. Commun. (AEÜ) 96, 228–237 (2018). https://doi.org/10.1016/j.aeue.2018.09.039

    CrossRef  Google Scholar 

  5. Kumar, V., Gupta, B.: On-body measurements of SS-UWB patch antenna for WBAN applications. Int. J. Electron. Commun. 70(5), 668–675 (2016). https://doi.org/10.1016/j.aeue.2016.02.003

    CrossRef  Google Scholar 

  6. Kushwaha, R.K., Karuppanana, P., Malviya, L.D.: Design and analysis of novel microstrip patch antenna on photonic crystal in THz. Physica B Condens. Matter 545, 107–112 (2018). https://doi.org/10.1016/j.physb.2018.05.045

    CrossRef  Google Scholar 

  7. Matyas, J., Slobodian, P., Munster, L., Olejnik, R., Urbanek, P.: Microstrip antenna from silver nanoparticles printed on a flexible polymer substrate. In: International Conference on Nanosciences & Nanotechnologies and 9th International Symposium on Flexible Organic Electronics Materials Today: Proceedings, vol. 4, pp. 5030–5038 (2017)

    Google Scholar 

  8. Dellaouia, S., Kaabala, A., Halaouia, M.E., Asselman, A.: Patch array antenna with high gain using EBG superstrate for future 5G cellular networks. Procedia Manuf. 22, 463–467 (2018). https://doi.org/10.1016/j.promfg.2018.03.071. 11th International Conference, Interdisciplinarity in Engineering, Tirgu-Mures, Romania

    CrossRef  Google Scholar 

  9. Raval, F., Kosta, Y.P., Joshi, H.: Reduced size patch antenna using complementary split ring resonator as defected ground plane. Int. J. Electron. Commun. 69(8), 1126–1133 (2015). https://doi.org/10.1016/j.aeue.2015.04.013

    CrossRef  Google Scholar 

  10. Sawant, K.K., Suthikshn Kumar, C.R.: CPW fed hexagonal micro strip fractal antenna for UWB wireless communications. Int. J. Electron. Commun. 69(1), 31–38 (2015). https://doi.org/10.1016/j.aeue.2014.07.022

    CrossRef  Google Scholar 

  11. Shang, F., Zhang, B.-J.: On study of the feeding method used for wide-banded micro-strip antenna. J. China Univ. Posts Telecommun. 18(Suppl. 2), 158–160 (2011). https://doi.org/10.1016/s1005-8885(10)60154-9

    MathSciNet  CrossRef  Google Scholar 

  12. Singh, A., Ansari, J.A., Kamakshi, Aneesh, M., Sayeed, S.S.: L-strip proximity fed gap coupled compact semi-circular disk patch antenna. Alexandria Eng. J. 53, 61–67 (2014). https://doi.org/10.1016/j.aej.2013.12.001

    CrossRef  Google Scholar 

  13. Yu, L.C., Kamarudin, M.R.: Investigation of patch phase array antenna orientation at 28 GHz for 5G applications, vol. 86, pp. 47–50 (2016). http://doi.org/10.1016/j.procs.2016.05.012. 2016 International Electrical Engineering Congress, iEECON2016

    CrossRef  Google Scholar 

  14. Venkatesh, C.K., Naveenkumar, S.K.: A development of micro strip patch antenna from synthesized nanocomposites materials for defense applications. Mater. Proc. 4(11), 12007–12011 (2007). https://doi.org/10.1016/j.matpr.2017.09.123. Part 3

    CrossRef  Google Scholar 

  15. Yun-xing, Y., Hui-chang, Z., Si, C., Shu-ning, Z.: Design of dual-frequency antenna for IoT applications. Cogn. Syst. Res. 52, 891–895 (2018). https://doi.org/10.1016/j.cogsys.2018.09.015

    CrossRef  Google Scholar 

  16. Karatay, A., Orcan, D., Özkal, C., Yaman, F.: Implementation and experimental verifications of microstrip antennas for angular scanning of a Doppler radar. AEU Int. J. Electron. Commun. 101, 76–84 (2019). https://doi.org/10.1016/j.aeue.2019.01.020

    CrossRef  Google Scholar 

  17. Abhilash, P., Roshni, S.B., Mohanan, P., Surendran, K.P.: A facile development of homemade substrate using ‘quench free’ glass-ceramic composite and printing microstrip patch antenna on it. Mater. Des. 137, 38–46 (2018). https://doi.org/10.1016/j.matdes.2017.10.015

    CrossRef  Google Scholar 

  18. Anantha, B., Merugu, L., Rao, S.: A novel single feed frequency and polarization reconfigurable microstrip patch antenna. Int. J. Electron. Commun. 72, 8–16 (2017). https://doi.org/10.1016/j.aeue.2016.11.012

    CrossRef  Google Scholar 

  19. Bhongale, S.R., Ingavale, H.R., Shinde, T.J., Vasambekar, P.N.: Microwave sintered Mg-Cd ferrite substrates for microstrip patch antennas in X-band. Int. J. Electron. Commun. 96, 246–251 (2018). https://doi.org/10.1016/j.aeue.2018.09.040

    CrossRef  Google Scholar 

  20. Chung, K.L., Li, Y., Zhang, C.: Broadband artistic antenna array composed of circularly-polarized Wang-shaped patch elements. Int. J. Electron. Commun. 74, 116–122 (2017). https://doi.org/10.1016/j.aeue.2017.02.006

    CrossRef  Google Scholar 

  21. Devesh, J.A.A., Siddiqui, M.G., Saroj, A.K.: Analysis of modified square sierpinski gasket fractal microstrip antenna for wireless communications. Int. J. Electron. Commun. 94, 377–385 (2018). https://doi.org/10.1016/j.aeue.2018.07.027

    CrossRef  Google Scholar 

  22. George, J.N., Madhan, M.G.: Analysis of single band and dual band graphene based patch antenna for terahertz region. Physica E Low-dimensional Syst. Nanostruct. 94, 126–131 (2017). https://doi.org/10.1016/j.physe.2017.08.001

    CrossRef  Google Scholar 

  23. Tölli, A., et al.: Massive multiple input multiple output (MIMO) Systems. In: Osseiran, A., Monserrat, J.F., Marsch, P. (eds.) 5G Mobile and Wireless Communications Technology, chap. 8, pp. 208–247. Cambridge University Press, Cambridge (2016). https://doi.org/10.1017/CBO9781316417744.009

    CrossRef  Google Scholar 

  24. Wilkinson, E.J.: An N-way power divider. IRE Trans. Microw. Theory Tech. 8, 116–118 (1960)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishana Ram Kashwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kashwan, K.R. (2020). High Gain Patch Array Antenna for 5G Network Communication and IoT Applications. In: Nain, N., Vipparthi, S. (eds) 4th International Conference on Internet of Things and Connected Technologies (ICIoTCT), 2019. ICIoTCT 2019. Advances in Intelligent Systems and Computing, vol 1122. Springer, Cham. https://doi.org/10.1007/978-3-030-39875-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39875-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39874-3

  • Online ISBN: 978-3-030-39875-0

  • eBook Packages: EngineeringEngineering (R0)