Skip to main content

Analysis of MEMS and Metamaterial Based Sensors and Its Involvement in Nanotechnology

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1122)

Abstract

MEMS is very smart and highly demanding field of technology and wide range of applications are prevailing, it includes electrical and mechanical components with the micro range size. In this review paper different sensors are included with critical analysis of idea, Along with categorization of various sensors and their behavior enclosed with result analysis. The comparative study with various angles in terms of the sensing capability, application, and features with parameter Study in proper context. This paper is specifically focused on “metamaterial” based sensors it is newly generated technology and emerging field of research point of view that are the integral part of developing material, metamaterial as absorber, flexible metamaterial sensor domain technology with several applications. The major advantages, disadvantages and big challenges in the path of technology advancement have also been discussed in detail. Furthermore there is also expanded description of the applicability of MEMS and Metamaterial based sensors in versatile area like bionic sensors, structural health monitoring indicated in different fields with analytical manner.

Keywords

  • MEMS
  • Metamaterial
  • Accelerometer
  • Bionic sensor and structural health monitoring

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-39875-0_12
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-39875-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Chen, T., Li, S., Sun, H.: Metamaterial application in sensing. Sensors 12, 2742–2765 (2012). https://doi.org/10.3390/S120302742. ISSN 14248220

    CrossRef  Google Scholar 

  2. Swartz, R.A., Lynch, J.P., Zerbst, S., Sweetman, B., Rolfes, R.: Structural monitoring of wind turbines using wireless sensor networks. Smart Struct. Syst. 6(3), 183–196 (2010)

    CrossRef  Google Scholar 

  3. Patil, P.K., Patil, S.R.: Structural health monitoring system using WSN for bridges. In: International Conference on Intelligent Computing and Control Systems, ICICCS. IEEE (2017). ISBN: 978-1-5386-2745-7/17

    Google Scholar 

  4. Ozbey, B., Unal, E.: Wireless displacement sensing enabled by metamaterial probes for remote structural health monitoring. Sensors 14, 1691–1704 (2014). https://doi.org/10.3390/s14010169. ISSN 1424–8220

    CrossRef  Google Scholar 

  5. Liu, Z.W., Fang, N., Yen, T.J., Zhang, X.: Rapid growth of evanescent wave by a silver superlens. Appl. Phys. Lett. 83, 5184–5186 (2003)

    CrossRef  Google Scholar 

  6. Griguer, H., Tentzeris, M.M., Nauroze, A., Drissi, M.: A novel ultra-thin flexible metamaterial absorber for human body protection from EMF hazards. In: 32nd URSI GASS, Montreal, 19–26 August 2017 (2017)

    Google Scholar 

  7. Dadafshar, M.: Accelerometer and Gyroscope sensors: operation, sensing and application, Maximum integrated (2014). http://pdfserv.maximintegrated.com/en/an/AN5830.pdf

  8. del Cueto Belchi, A., Garcia Rodriguez, D., Rothpfeffer, N., Pelegri Sebastiá, J., Chilo, J.: Multi-sensor olfactory system. In: 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Graz, pp. 1139–1141 (2012)

    Google Scholar 

  9. Liu, R., Ji, C., Zhao, Z., Zhou, T.: Advance materials and material genome-review metamaterial: reshape and rethink (2015). https://doi.org/10.15315/j-eng-2015036

  10. Gervais-Ducouret, S.: Next smart sensors generation. IEEE (2011). ISBN: 978-1-4244-8064-7/11/2011

    Google Scholar 

  11. Yuce, M.R.: Recent wireless body sensors: design and implementation. In: IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO) (2013)

    Google Scholar 

  12. Wilson, A.D., Baietto, M.: Applications and advances in electronic-nose technologies. Sensors 9, 5099–5148 (2009). ISSN 1424-8220

    CrossRef  Google Scholar 

  13. Pister, K.S.J.: Lecture notes “On the Limits and Applications of MEMS Sensor Networks”, UC Berkeley. http://datasys.cs.iit.edu/reports/2002_WSU_csc8800_2002.pdf. Accessed 29 Apr 2018

  14. Raicu, I.: MEMS a technology overview and limitations. In: CSC8800, p. 122, September 2004. https://compliantmechanisms.byu.edu/comtent/introduction-microelectromechanical-systemmemsComppiantMechanicalResearch. Brigham Young University, USA

  15. Wilson, A.D.: Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath. Metabolites 5(140–163), 140–163 (2015)

    CrossRef  Google Scholar 

  16. Anitha, M.: Sensor grid based vision status monitoring in eye care system. Int. J. Future Comput. Commun. 1(1), 57–61 (2012)

    MathSciNet  CrossRef  Google Scholar 

  17. Filimon, D.-M.: Skin diseases diagnosis using artificial neural networks. In: 9th IEEE International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 15–17 May 2014, pp. 189–194 (2014)

    Google Scholar 

  18. Bi, Y., Lv, M.: AutoDietary: a wearable acoustic sensor system for food intake recognition in daily life. IEEE Sens. J. 16(3), 806–816 (2016)

    CrossRef  Google Scholar 

  19. Pérez, J.J., Saldarriaga, A.J., Bustamante, J.: A wireless body sensor network platform to measure vital signs in clinical monitoring. In: 2013 Pan American Health Care Exchanges (PAHCE), Medellin, Colombia, 29 April–4 May 2013 (2013). IEEE Catalog Number: CFP1318G-art, ISBN: 978-1-4673-6257

    Google Scholar 

  20. Giammarini, M., Isidori, D., Pieralisi, M.: Design of wireless sensor network for real-time structural health monitoring. In: IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits and Systems. IEEE (2015). https://doi.org/10.1109/ddecs.2015.45. ISBN: 978-1-4799-6780-3/2015

  21. Li, X., Cui, H.: Experimental study of structural health monitoring methods based on piezoelectric element array. IEEE (2017). ISBN: 978-5090-5363-6/17

    Google Scholar 

  22. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)

    CrossRef  Google Scholar 

  23. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Low frequency plasmons in thin-wire structures. J. Phys.: Condens. Matter 10, 4785–4809 (1998)

    Google Scholar 

  24. Marcus, S.W., Schwartz, C., Naor, M.: Metamaterials and their applications (2009). Manor division, Rafael, Haifa, Israel

    Google Scholar 

  25. Jakšic, Z., Jakšic, O., Matovic, J.: Performance limits to the operation of nanoplasmonic chemical sensors-noise equivalent refractive index and detectivity. J. Nanophoton 3, 031770 (2009)

    CrossRef  Google Scholar 

  26. Homola, J., Piliarik, M.: Surface plasmon resonance (SPR) sensors. In: Homola, J., (ed.) Surface Plasmon Resonance Based Sensors, vol. 159, pp. 45–67. Springer, Berlin (2006)

    Google Scholar 

  27. Jakšić, Z., Djurić, Z.: Cavity enhancement of auger-suppressed detectors: a way to background-limited room-temperature operation in 3–14 μm range. IEEE J. Sel. Top. Quantum Electron. 10, 771–776 (2004)

    CrossRef  Google Scholar 

  28. Annamdas, V.G.M., Soh, C.K.: Application of electromechanical impedance technique for engineering structures: review and future issues. J. Intell. Mater. Syst. Struct. 21(1), 41–59 (2010)

    CrossRef  Google Scholar 

  29. Annamdas, V.G.M., Radhika, M.A.: Electromechanical impedance of piezoelectric transducers for monitoring metallic and non metallic structures: a review of wired, wireless and energy harvesting methods. J. Intell. Mater. Syst. Struct. 24(9), 1019–1040 (2013)

    CrossRef  Google Scholar 

  30. Cho, S., Yun, C.B., Lynch, J.P., Zimmerman, A.T., Spencer Jr., B.F., Nagayama, T.: Smart wireless sensor technology for structural health monitoring of civil structures. Steel Struct. 8, 267–275 (2008)

    Google Scholar 

  31. Smith, D.R.: A cloaking coating for murky media. Science 345, 384 (2014)

    CrossRef  Google Scholar 

  32. Annamdas, V.G.M., Soh, C.K.: Influence of loading on the near field based passive metamaterial. Struct. Health Monit. (2015). https://doi.org/10.12783/SHM2015/81

    CrossRef  Google Scholar 

  33. Chidambaram, R.: Material Research and Technology Foresight, S.B. Krupanidhi, MRC, IISc, Bangalore Smart Sensors and Actuators page no. 543

    Google Scholar 

  34. Hosseinzadeh, H.R.S., Hosseinzadeh, H.: Metamaterials in medicine: a new era for future orthopedics. Ortho. Res. Online J. 2(5) (2018). https://doi.org/10.31031/oproj.2018.02.000549

  35. Bilotti, F., Sevgi, L.: Metamaterials definitions, properties, applications, and FDTD-based modeling and simulation. Int. J. RF Microw. Comput. Aided Eng. 22(4) (2012). https://doi.org/10.1002/mmce

  36. La Spada, L., Bilotti, F., Vegni, L.: Metamaterial biosensor for cancer detection (2011). ISBN: 978-1-4244-9289-3/11/$26.00 ©IEEE

    Google Scholar 

  37. Wang, G., Gong, Y.: Metamaterial lens applicator for microwave hyperthermia of breast cancer. Int. J. Hyperth. 25(6), 434–445 (2009). https://doi.org/10.1080/02656730903061609

    CrossRef  Google Scholar 

  38. Cheng, X., David, E., Kim, C., Yoon, Y.-K.: A compact omnidirectional self-packaged patch antenna with complementary split-ring resonator loading for wireless endoscope applications. IEEE Antennas Wirel. Propag. Lett. 10, 1532–1535 (2011)

    CrossRef  Google Scholar 

  39. Castro, P.J., Barroso, J.J., Leite Neto, J.P.: Experimental Study on split ring Resonator with different slit widths. J. Electromagn. Anal. Appl. 5, 366 (2013). https://doi.org/10.4236/jemaa.59058

    CrossRef  Google Scholar 

  40. Karmakar, N.C., Amin, E.M., Saha, J.K.: Chipless RFID sensor for real time environment monitoring (2016). https://doi.org/10.1002/9781119078104.ch7

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bhupendra Sharma , Shraddha Gupta , Ashwani Yadav or Rahul Runthala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Sharma, B., Gupta, S., Yadav, A., Runthala, R. (2020). Analysis of MEMS and Metamaterial Based Sensors and Its Involvement in Nanotechnology. In: Nain, N., Vipparthi, S. (eds) 4th International Conference on Internet of Things and Connected Technologies (ICIoTCT), 2019. ICIoTCT 2019. Advances in Intelligent Systems and Computing, vol 1122. Springer, Cham. https://doi.org/10.1007/978-3-030-39875-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39875-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39874-3

  • Online ISBN: 978-3-030-39875-0

  • eBook Packages: EngineeringEngineering (R0)