Skip to main content

Pterostilbene as a Potent Chemopreventive Agent in Cancer

  • Chapter
  • First Online:
Natural Products for Cancer Chemoprevention

Abstract

Pterostilbene (Pter, trans-3,5-dimethoxy-4′-hydroxystilbene), a natural analog of resveratrol accumulated in grapevine leaves and blueberries, has attracted immense interest in the scientific community due to its potent biological properties, including anti-inflammatory, antioxidative, and anticancer effects. This chapter focuses on summarizing the up-to-date information related to the pharmacological effects and cellular/molecular mechanisms of pterostilbene with an emphasis on cancer. Numerous preclinical studies have reported on the proapoptotic and anticancer properties of pterostilbene against a variety of cancers, both in vitro and in vivo. Pterostilbene, like resveratrol, acts through various mechanisms, targeting specific signaling pathways and affecting epigenetic regulators of cell growth and metastasis. Pterostilbene has also been reported to sensitize cancer cells to standard chemotherapy. Pterostilbene’s protective and therapeutic effects have been observed in different cancers, including breast, colorectal, lung, and prostate, among others. Pterostilbene, with improved bioavailability, conferring a superior pharmacokinetic profile and greater anticancer efficacy, may become a stronger candidate than resveratrol for clinical development with potential applications in cancer. Clinical trials examining the chemopreventive and therapeutic potential of pterostilbene are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

γ-H2AX:

Gamma histone 2A variant X

143B:

Human osteosarcoma cell line

22Rv1:

Human prostate cancer cell line

4E-BP:

Eukaryotic translation initiation factor 4E binding protein

4OHT:

4 hydroxy tamoxifen

5-FU:

5-fluorouracil

A2058:

Human melanoma cell line

A549:

Human lung (NSCLC) cancer cells

Ac:

Acetylated

ACC:

Acetyl-CoA carboxylase

ACF:

Aberrant crypt foci

ACTH:

Adrenocorticotropic hormone

Ago2:

Argonaute 2

AGS:

Human gastric cancer cell line

AKT:

v-akt murine thymoma viral oncogene (protein kinase B)

AMACR:

Alpha-methylacyl-CoA racemase

AMPK:

5′ AMP-activated protein kinase

AP1:

Jun proto-oncogene

AR:

Androgen receptor

ARH77:

Human multiple myeloma (MM) cell line

ARP1:

Human multiple myeloma (MM) cell line

Arp2:

Actin-related protein 2

Arp3:

Actin-related protein 3

AsPC1:

Human pancreatic cell line

ATF4:

Activating transcription factor 4

ATM:

Ataxia telangiectasia mutated serine-threonine kinase

B16/F10:

Human melanoma cell line

Bad:

Bcl2 associated agonist of cell death

Bak:

Bcl2 antagonist/killer 1

Bax:

Bcl2 associated X

BCL-2:

B-cell lymphoma 2

BCL2L14:

B-cell lymphoma like 14

BCL-x(L):

B-cell lymphoma like 1

Bid:

BH3 interacting domain death agonist

BRCA1:

Breast cancer 1

BT20:

Breast cancer cell line

BT549:

Breast cancer cell line

BxPC3:

Human pancreatic cell line

C6:

Rat C6 glioblastoma cell line

Ca++/Ca2+ :

Calcium ion

Caco2 :

Human colon cancer cell line

CAL27:

Head and neck cell line

CAT:

Catalase

CCl4 :

Carbon tetrachloride

CCSD-18Co:

Human colorectal cancer cell line

CD133 :

Prominin 1 (PROM1)

CD44:

Cell-surface glycoprotein, receptor for HA

Cdc25A:

Cell division cycle 25A

CDK:

Cyclin-dependent kinase

Chk1 :

Checkpoint kinase 1

Chk2:

Checkpoint kinase 2

CHOP:

DNA damage inducible transcript 3 (DDIT3)

COX2:

Cyclo-oxygenase 2

CpG:

Cytosine-phophate-guanine dinucleotide

CRH:

Corticotropin releasing hormone

CSCs:

Cancer stem cells

CXCR4:

C-X-C chemokine receptor type 4

DEN:

Diethylnitrosamine

DIABLO:

Diablo IAP-binding mitochondrial protein

DLBCL:

Diffuse large B-cell lymphoma

DLD-1:

Human colon cancer cell line

DMBA:

7,12-Dimethylbenzanthracene

DNA:

Deoxyribonucleic acid

DNMT:

DNA methyltransferase

DR4:

Death receptor 4

DR5:

Death receptor 5

DU145:

Human prostate cancer cell line

E2:

17 beta-estradiol, estrogen

EBPα:

EBP cholesterol delta-isomerase

EC109:

Human esophageal cancer cell line

ECC1:

Human endometrial cancer cell line

EGCG:

Epigallocatechin gallate

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

Egr1:

Early growth response 1

Elf2a:

E74-like factor 2a

ELK1:

ETS transcription factor ELK1

EMT:

Epithelial- to -mesenchymal transition

eNOS:

Endothelial nitric oxide synthase

ER:

Endoplasmic reticulum

ERK1/2:

Extracellular signal-regulated kinase

ERα:

Estrogen receptor alpha

ERβ:

Estrogen receptor beta

ETS2:

ETS protro-oncogene 2, transcription factor

FAK:

Focal adhesion kinase

Fas:

Fas cell surface death receptor

FasL:

Fas ligand

FASN:

Fatty acid synthase

FDA:

Food and Drug Administration

FLIPS/L:

CASP8 and FADD like apoptosis regulator

FOXO1:

Forkhead box O1

FOXO3:

Forkhead box O3

GADD45G:

Growth arrest and DNA damage inducible 45 gamma

GBM:

Human glioblastoma cell line

GCR:

Glutathione reductase

GPM (GC):

Patient derived glioblastoma cell line

GPx:

Glutathione peroxidase

GR:

Glucocorticoid receptor

GRIP1:

Glutamate receptor interacting protein 1

GRP78:

Glucose regulated protein 78

GSG:

Germ cell associated 1

GSH:

Glutathione

GSK 3β:

Glycogen synthase kinase 3β

GSSG:

Glutathione disulfide (oxidized glutathione)

GST:

Glutathione S-transferase

H1299:

Human lung cancer cell line

H2O2 :

Hydrogen peroxide

H3:

Histone 3

H4:

Histone 4

H441:

Human lung cancer cell line

H460:

Human lung cancer cell line

H460:

Lung cancer cell line

H929:

Human multiple myeloma (MM) cell line

H929R:

Human multiple myeloma (MM) cell line (bortezomib-resistant)

HAT:

Histone acetyltransferase

HBECR:

Human bronchial epithelial cells

HCC1806:

Breast cancer cell line

HCT-116:

Colorectal cancer cell line

HCT116:

Human colorectal cell line

HDAC1:

Histone deacetylase 1

HDAC2:

Histone deacetylase 2

HDM:

Histone demethylase

HEC1A:

Human endometrial cancer cell line

HeLa:

Human cervical cancer cell line

Hep3B:

Human liver cancer cell line

HepG2:

Human liver cancer cell line

Hes1:

Hes family bHLH transcription factor 1

HIF1α:

Hypoxia inducible factor 1 alpha

HO1:

Heme oxygenase

HOS:

Osteosarcoma cell line

HPV:

Human papilloma virus

HPV/E6:

Human papilloma virus/transforming protein E6

HSP70:

Heat shock protein 70

HSP90:

Heat shock protein 90

HT1080:

Human leukemia cells

HT29:

Human colorectal cancer cell line

HT60:

Human leukemia cells

HTB111:

Human endometrial cancer cell line

Hut-78:

Human leukemia/lymphoma cell line

i.p.:

Intraperitoneal

i.v.:

Intravenous

ICAM1:

Intercellular adhesion molecule 1

IGFBP3:

Insulin growth factor binding protein 3

IGROV1:

Human ovarian cancer cell line

IKK:

Inhibitor of nuclear factor kappa B kinase

IL1β:

Interleukin 1β

IL6:

Interleukin 6

IL8:

Interleukin 8

iNOS:

Inducible nitric oxide synthase

IRE1:

Endoplasmic reticulum to nucleus signaling 1/inositol-requiring enzyme 1

Ishikawa:

Endometrial cancer cell line

IκB:

Inhibitor of nuclear factor kappa B

IκBα:

Inhibitor of nuclear factor kappa B subunit alpha

JAK:

Janus kinase

JNK1/2:

c-Jun N-terminal kinase

Jurkat:

Human leukemia/lymphoma cell line

K562:

Human chronic myelogenous leukemia cell line

KITLG:

KIT proto-oncogene receptor tyrosine kinase ligand

LC3:

Light chain 3 (microtubule associated protein)

LCSC:

Human lung cancer stem cells

LDH:

L-lactate dehydrogenase

LLC:

Human lung cancer cell line

LMP:

Lysosomal membrane potential

LNCaP :

Human prostate cancer cell line

LNCaP:

Prostate cancer cell line

lncRNA:

Long non-coding ribonucleic acid

LXR:

LexA regulated function

MAML2:

Mastermind like transcriptional coactivator 2

MAPK:

Mitogen-activated protein kinase

MBD:

Methyl-CpG-binding domain

MCF10A:

Human immortalized breast epithelial cells

MCF-7:

Human breast cancer cell line

MCP1:

Monocyte chemotactic protein 1

MDA-MB157:

Human breast cancer cell line

MDA-MB231:

Human breast cancer cell line

MDA-MB468:

Human breast cancer cell line

MDR:

Multidrug resistance

MDR1:

Multidrug resistance 1

MEK:

Mitogen-activated protein kinase kinase

MelJuso:

Human melanoma cell line

MeWo:

Human melanoma cell line

MG-63:

Human osteosarcoma cell line

MIA PaCa2:

Human pancreatic cancer cell line

MicroRNA:

Micro ribonucleic acid

MiRNA:

Micro ribonucleic acid

miR:

Micro ribonucleic acid

MKK3:

Mitogen activated protein kinase kinase 3

MKK6:

Mitogen activated protein kinase kinase 6

MM:

Multiple myeloma

MMP:

Mitochondrial membrane potential

MMPs:

Matrix metalloproteinases

MMP2:

Matrix metalloproteinase 2

MMP9:

Matrix metalloproteinase 9

MMP26:

Matrix metalloproteinase 26

MOLT4:

Human leukemia or lymphoma cell line

mnSOD:

Mitochondrial superoxide dismutase

mRNA:

Messenger ribonucleic acid

MSH:

Melanocyte stimulating hormone

MSK1:

Mitochondrial lysine-tRNA ligase MSK1

MTA1:

Metastasis-associated protein 1

mTOR:

Mammalian target of rapamycin

MUC2:

Mucin 2

MV4-11:

Human leukemia cell line

MYC:

Myc protooncogene, bHLH transcription factor

NAD:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate dehydrogenase

ncRNA:

Non-coding ribonucleic acid

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NICD:

Notch intracellular domain

NSCLC:

Non-small cell lung cancer

NO:

Nitric oxide

NORA:

Noradrenaline

NOX1:

NADPH oxidase 1

NOTCH1:

Notch transmembrane protein 1

NOTCH2:

Notch transmembrane protein 2

NRF2:

Nuclear factor erythroid 2-related factor 2

NuRD:

Nucleosome remodeling and deacetylase complex

NQO1:

NADPH quinone oxidoreductase 1

O2 :

Superoxide anion

OC1-MY5:

Human multiple myeloma (MM) cell line

OCI-LY8:

DLBCL (B-cell lymphoma)

OCL:

Human leukemia cell line

OH:

Hydroxyl radicals

oncomiR:

Oncogenic microRNA

OVCAR 4/8:

Human ovarian cancer cell line 4 and 8

OV1063:

Human ovarian cancer cell line

PAI-1:

Plasminogen activator inhibitor 1

PANC1:

Human pancreatic cancer cell line

PARP:

Poly-(ADP-ribose) polymerase

PC9:

Human lung cancer (NSCLC) cell line

PC3:

Human prostate cancer cell line

PERK:

Protein kinas R (PKR)-like endoplasmic reticulum kinase

PI3K:

Phosphatidylinositol 3-kinase/serine/threonine kinase PKB

PIN:

Prostatic intraepithelial neoplasia

PKCα:

Protein kinase α

PKCβ:

Protein kinase β

PKCγ:

Protein kinase γ

POMC:

Pro-opiomelanocortin

PPARγ:

Peroxisome proliferation activated receptor gamma

PTEN:

Phosphatase and tensin homolog

Pter:

Pterostilbene

PUMA:

p53 upregulated modifier of apoptosis

p15:

Cyclin-dependent kinase inhibitor 2B

p16:

Cyclin-dependent kinase inhibitor 2A

p21:

Cyclin-dependent kinase inhibitor 1A

p27:

Cyclin-dependent kinase inhibitor 1B

p38:

Mitogen-activated protein kinase 14

p53:

Tumor suppressor protein 53

p65:

Protein 65 (NF-κB subunit)

Ras-GTP:

Ras family small GTPase

RAC1:

Rac family small GTPase 1

Rb1:

Retinoblastoma protein 1

Res:

Resveratrol

ROS:

Reactive oxygen species

RPMI8226:

Human multiple myeloma (MM) cell line

Saos-2:

Human osteosarcoma cell line

SAHA:

Suberoylanilide hydoxamic acid

SAS:

Human oral cancer cell line

s.c.:

Subcutaneous

SCC9:

human oral cancer cell line

SDK2:

Sidekick cell adhesion molecule 2

SDK6:

Sidekick cell adhesion molecule 6

SIRT1:

Sirtuin 1, silent information regulator 1

SK-BR3:

Human breast cancer cell line

SK-MEL2:

Human melanoma cell line

SK-MES1:

Human lung cancer cell line

SKOV3:

Human ovarian cancer cell line

SMAC:

Diablo IAP-binding mitochondrial protein

SMAD2:

SMAD family member 2/mothers against decapentaplegic homolog 2

SMMC7221:

Human liver cancer cell line

SOD:

Superoxide dismutase

SOSP9607:

Human osteosarcoma cell line

SOX2:

SRY (sex determining region Y)-box 2

Sp1:

Specificity protein 1

SQSTM1:

Sequestosome 1

Src:

Src proto-oncogene tyrosine-protein kinase

STAT3:

Signal transducer and activator of transcription 3

SUDHL4:

Human DLBCL cell line

SW480:

Human colon cancer cell line

T98G:

Human glioblastoma cell line

TAM:

Tumor-associated macrophages

TAP:

Tocopherol-associated protein

TCF4:

Transcription factor 4

hTERT:

Human telomerase reverse transcriptase

TE1:

Human esophageal cancer cell line

TGFβ:

Transforming growth factor beta

THP1:

Human leukemia cell line

TLR4:

Toll-like receptor 4

TMD8:

Human DLBCL cells

TNBC:

Triple-negative breast cancer

TNFα:

Tumor necrosis factor alpha

TPA:

12-O-tetradecanoylphorbol 13-acetate

TRAIL:

TNF-related apoptosis-inducing ligand

TrxR1:

Thioredoxin reductase 1

Twist1:

Twist family bHLH transcription factor 1

TXNIP:

Thioredoxin interacting protein

T24:

Human bladder cancer cell line

U2OS:

Human osteosarcoma cell line

U266:

Human glioblastoma cell line

U937:

Human leukemia cell line

VCAM1:

Vascular cell adhesion molecule 1

VEGF:

Vascular endothelial growth factor

WAVE:

WASP family member 1

Wnt:

Wnt protein

XBP1:

X-box binding protein 1

XIAP:

X-linked inhibitor of apoptosis

ZBTB10:

Zinc finger and BTB domain containing 10

ZEB1:

Zinc finger E-box binding homeobox 1

References

  • Adlercreutz H (2002) Phyto-oestrogens and cancer. Lancet Oncol 3:364–373

    Article  PubMed  Google Scholar 

  • Adrian M, Jeandet P, Douillet-Breuil AC et al (2000) Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. J Agric Food Chem 48:6103–6105

    Article  CAS  PubMed  Google Scholar 

  • Akhtar N, Bansal JG (2017) Risk factors of lung cancer in nonsmoker. Curr Probl Cancer 41:328–339

    Article  PubMed  Google Scholar 

  • Alosi JA, McDonald DE, Schneider JS et al (2010) Pterostilbene inhibits breast cancer in vitro through mitochondrial depolarization and induction of caspase-dependent apoptosis. J Surg Res 161:195–201

    Article  CAS  PubMed  Google Scholar 

  • Arjungi KN (1976) Areca nut: a review. Arzneimittelforschung 26:951–956

    CAS  PubMed  Google Scholar 

  • Asensi M, Ortega A, Mena S et al (2011) Natural polyphenols in cancer therapy. Crit Rev Clin Lab Sci 48:197–216

    Article  CAS  PubMed  Google Scholar 

  • Azar FE, Azami-Aghdash S, Pournaghi-Azar F et al (2017) Cost-effectiveness of lung cancer screening and treatment methods: a systematic review of systematic reviews. BMC Health Serv Res 17:413

    Article  PubMed  PubMed Central  Google Scholar 

  • Azzolini M, La Spina M, Mattarei A et al (2014) Pharmacokinetics and tissue distribution of pterostilbene in the rat. Mol Nutr Food Res 58:2122–2132

    Article  CAS  PubMed  Google Scholar 

  • Benlloch M, Obrador E, Valles SL et al (2016) Pterostilbene decreases the antioxidant defenses of aggressive cancer cells in vivo: a physiological glucocorticoids- and Nrf2-dependent mechanism. Antioxid Redox Signal 24:974–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C et al (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosland MC (2016) Is there a future for chemoprevention of prostate cancer? Cancer Prev Res (Phila) 9:642–647

    Article  CAS  Google Scholar 

  • Brase JC, Johannes M, Schlomm T et al (2011) Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 128:608–616

    Article  CAS  PubMed  Google Scholar 

  • Butt NA, Kumar A, Dhar S et al (2017) Targeting MTA1/HIF-1alpha signaling by pterostilbene in combination with histone deacetylase inhibitor attenuates prostate cancer progression. Cancer Med 6:2673–2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty A, Gupta N, Ghosh K et al (2010) In vitro evaluation of the cytotoxic, anti-proliferative and anti-oxidant properties of pterostilbene isolated from Pterocarpus marsupium. Toxicol In Vitro 24:1215–1228

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty A, Bodipati N, Demonacos MK et al (2012) Long term induction by pterostilbene results in autophagy and cellular differentiation in MCF-7 cells via ROS dependent pathway. Mol Cell Endocrinol 355:25–40

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Kumar A, Butt NA et al (2016) Molecular insight into the differential anti-androgenic activity of resveratrol and its natural analogs: in silico approach to understand biological actions. Mol BioSyst 12:1702–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang ET, Canchola AJ, Lee VS et al (2007a) Wine and other alcohol consumption and risk of ovarian cancer in the California Teachers Study cohort. Cancer Causes Control 18:91–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang ET, Lee VS, Canchola AJ et al (2007b) Diet and risk of ovarian cancer in the California Teachers Study cohort. Am J Epidemiol 165:802–813

    Article  PubMed  Google Scholar 

  • Chang J, Rimando A, Pallas M et al (2012) Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease. Neurobiol Aging 33:2062–2071

    Article  CAS  PubMed  Google Scholar 

  • Chang G, Xiao W, Xu Z et al (2017) Pterostilbene induces cell apoptosis and cell cycle arrest in T-Cell Leukemia/Lymphoma by suppressing the ERK1/2 pathway. Biomed Res Int 2017:9872073

    PubMed  PubMed Central  Google Scholar 

  • Charvey-Faury S, Derbesy M, Cochini F et al (1998) Sandalwood extract (Pterocarpus santalinus): anti-oxidant and anti-UV effects study. Riv Ital EPPOS spec. no.:435–458

    Google Scholar 

  • Chatterjee K, AlSharif D, Mazza C et al (2018) Resveratrol and pterostilbene exhibit anticancer properties involving the downregulation of HPV Oncoprotein E6 in cervical cancer cells. Nutrients 10(2). https://doi.org/10.3390/nu10020243

  • Chau CH, Price DK, Till C et al (2015) Finasteride concentrations and prostate cancer risk: results from the prostate cancer prevention trial. PLoS One 10:e0126672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen RJ, Ho CT, Wang YJ (2010) Pterostilbene induces autophagy and apoptosis in sensitive and chemoresistant human bladder cancer cells. Mol Nutr Food Res 54:1819–1832

    Article  CAS  PubMed  Google Scholar 

  • Chen RJ, Tsai SJ, Ho CT et al (2012) Chemopreventive effects of pterostilbene on urethane-induced lung carcinogenesis in mice via the inhibition of EGFR-mediated pathways and the induction of apoptosis and autophagy. J Agric Food Chem 60:11533–11541

    Article  CAS  PubMed  Google Scholar 

  • Chen WC, Hsu KY, Hung CM et al (2014) The anti-tumor efficiency of pterostilbene is promoted with a combined treatment of Fas signaling or autophagy inhibitors in triple negative breast cancer cells. Food Funct 5:1856–1865

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Xu Z, Chang G et al (2017a) The blueberry component pterostilbene has potent anti-myeloma activity in bortezomib-resistant cells. Oncol Rep 38:488–496

    Article  CAS  PubMed  Google Scholar 

  • Chen RJ, Wu PH, Ho CT et al (2017b) P53-dependent downregulation of hTERT protein expression and telomerase activity induces senescence in lung cancer cells as a result of pterostilbene treatment. Cell Death Dis 8:e2985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chikara S, Nagaprashantha LD, Singhal J et al (2018) Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett 413:122–134

    Article  CAS  PubMed  Google Scholar 

  • Chiou YS, Tsai ML, Wang YJ et al (2010) Pterostilbene inhibits colorectal aberrant crypt foci (ACF) and colon carcinogenesis via suppression of multiple signal transduction pathways in azoxymethane-treated mice. J Agric Food Chem 58:8833–8841

    Article  CAS  PubMed  Google Scholar 

  • Chiou YS, Tsai ML, Nagabhushanam K et al (2011) Pterostilbene is more potent than resveratrol in preventing azoxymethane (AOM)-induced colon tumorigenesis via activation of the NF-E2-related factor 2 (Nrf2)-mediated antioxidant signaling pathway. J Agric Food Chem 59:2725–2733

    Article  CAS  PubMed  Google Scholar 

  • Cichocki M, Paluszczak J, Szaefer H et al (2008) Pterostilbene is equally potent as resveratrol in inhibiting 12-O-tetradecanoylphorbol-13-acetate activated NFkappaB, AP-1, COX-2, and iNOS in mouse epidermis. Mol Nutr Food Res 52(Suppl 1):S62–S70

    PubMed  Google Scholar 

  • Curran EK, Godfrey J, Kline J (2017) Mechanisms of immune tolerance in leukemia and lymphoma. Trends Immunol 38:513–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel M, Tollefsbol TO (2018) Pterostilbene down-regulates hTERT at physiological concentrations in breast cancer cells: potentially through the inhibition of cMyc. J Cell Biochem 119:3326–3337

    Article  CAS  PubMed  Google Scholar 

  • Deng L, Li Y, Zhang X et al (2015) UPLC-MS method for quantification of pterostilbene and its application to comparative study of bioavailability and tissue distribution in normal and Lewis lung carcinoma bearing mice. J Pharm Biomed Anal 114:200–207

    Article  CAS  PubMed  Google Scholar 

  • Dhar S, Hicks C, Levenson AS (2011) Resveratrol and prostate cancer: promising role for microRNAs. Mol Nutr Food Res 55:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Dhar S, Kumar A, Li K et al (2015a) Resveratrol regulates PTEN/Akt pathway through inhibition of MTA1/HDAC unit of the NuRD complex in prostate cancer. Biochim Biophys Acta 1853:265–275

    Article  CAS  PubMed  Google Scholar 

  • Dhar S, Kumar A, Rimando AM et al (2015b) Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting oncomiRs of the miR-17 family in prostate cancer. Oncotarget 6(29):27214–27226

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhar S, Kumar A, Zhang L et al (2016) Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget 7:18469–18484

    Article  PubMed  PubMed Central  Google Scholar 

  • Dias SJ, Li K, Rimando AM et al (2013a) Trimethoxy-resveratrol and piceatannol administered orally suppress and inhibit tumor formation and growth in prostate cancer xenografts. Prostate 73:1135–1146

    Article  CAS  PubMed  Google Scholar 

  • Dias SJ, Zhou X, Ivanovic M et al (2013b) Nuclear MTA1 overexpression is associated with aggressive prostate cancer, recurrence and metastasis in African Americans. Sci Rep 3:2331

    Article  PubMed  PubMed Central  Google Scholar 

  • DiDonato JA, Mercurio F, Karin M (2012) NF-kappaB and the link between inflammation and cancer. Immunol Rev 246:379–400

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Guo H, Chen Y (2016) Pterostilbene induces apoptosis through caspase activation in ovarian cancer cells. Eur J Gynaecol Oncol 37:342–347

    CAS  PubMed  Google Scholar 

  • Dvorakova M, Landa P (2017) Anti-inflammatory activity of natural stilbenoids: a review. Pharmacol Res 124:126–145

    Article  CAS  PubMed  Google Scholar 

  • Erasalo H, Hamalainen M, Leppanen T et al (2018) Natural stilbenoids have anti-inflammatory properties in vivo and down-regulate the production of inflammatory mediators NO, IL6, and MCP1 possibly in a PI3K/Akt-dependent manner. J Nat Prod 81:1131–1142

    Article  CAS  PubMed  Google Scholar 

  • Estrela JM, Asensi A (2010). Pterostilbene (Pter) for the prevention and/or treatment of skin diseases

    Google Scholar 

  • Estrela JM, Ortega A, Mena S et al (2013) Pterostilbene: biomedical applications. Crit Rev Clin Lab Sci 50:65–78

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Yang Y, Fan C et al (2016) Pterostilbene inhibits the growth of human esophageal cancer cells by regulating endoplasmic reticulum stress. Cell Physiol Biochem 38:1226–1244

    Article  CAS  PubMed  Google Scholar 

  • Ferrer P, Asensi M, Segarra R et al (2005) Association between pterostilbene and quercetin inhibits metastatic activity of B16 melanoma. Neoplasia 7:37–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrer P, Asensi M, Priego S et al (2007) Nitric oxide mediates natural polyphenol-induced Bcl-2 down-regulation and activation of cell death in metastatic B16 melanoma. J Biol Chem 282:2880–2890

    Article  CAS  PubMed  Google Scholar 

  • Fuendjiep V, Wandji J, Tillequin F et al (2002) Chalconoid and stilbenoid glycosides from Guibourtia tessmanii. Phytochemistry 60:803–806

    Article  CAS  PubMed  Google Scholar 

  • Gambini J, Ingles M, Olaso G et al (2015) Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxidative Med Cell Longev 2015:837042

    Article  CAS  Google Scholar 

  • Gao Y, Tollefsbol TO (2015) Impact of epigenetic dietary components on cancer through histone modifications. Curr Med Chem 22:2051–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao D, Jing S, Zhang Q et al (2018) Pterostilbene protects against acute renal ischemia reperfusion injury and inhibits oxidative stress, inducible nitric oxide synthase expression and inflammation in rats via the Toll-like receptor 4/nuclear factor-kappaB signaling pathway. Exp Ther Med 15:1029–1035

    CAS  PubMed  Google Scholar 

  • Gehm BD, Levenson AS (2006) Resveratrol as a phytoestrogen. In: Aggarwal BB, Shishodia S (eds) Resveratrol in health and disease. Taylor & Francis, Boca Raton, FL, pp 439–464

    Google Scholar 

  • Guo L, Tan K, Wang H et al (2016) Pterostilbene inhibits hepatocellular carcinoma through p53/SOD2/ROS-mediated mitochondrial apoptosis. Oncol Rep 36:3233–3240

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara K, Kosaka N, Yoshioka Y et al (2012) Stilbene derivatives promote Ago2-dependent tumour-suppressive microRNA activity. Sci Rep 2:314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardy TM, Tollefsbol TO (2011) Epigenetic diet: impact on the epigenome and cancer. Epigenomics 3:503–518

    Article  CAS  PubMed  Google Scholar 

  • Harun Z, Ghazali AR (2012) Potential chemoprevention activity of pterostilbene by enhancing the detoxifying enzymes in the HT-29 cell line. Asian Pac J Cancer Prev 13:6403–6407

    Article  PubMed  Google Scholar 

  • Hofer MD, Kuefer R, Varambally S et al (2004) The role of metastasis-associated protein 1 in prostate cancer progression. Cancer Res 64:825–829

    Article  CAS  PubMed  Google Scholar 

  • Hong BH, Wu CH, Yeh CT et al (2013) Invadopodia-associated proteins blockade as a novel mechanism for 6-shogaol and pterostilbene to reduce breast cancer cell motility and invasion. Mol Nutr Food Res 57:886–895

    Article  CAS  PubMed  Google Scholar 

  • Hong Bin W, Da LH, Xue Y et al (2018) Pterostilbene (3′,5′-dimethoxy-resveratrol) exerts potent antitumor effects in HeLa human cervical cancer cells via disruption of mitochondrial membrane potential, apoptosis induction and targeting m-TOR/PI3K/Akt signalling pathway. J BUON 23:1384–1389

    PubMed  Google Scholar 

  • Hsiao PC, Chou YE, Tan P et al (2014) Pterostilbene simultaneously induced G0/G1-phase arrest and MAPK-mediated mitochondrial-derived apoptosis in human acute myeloid leukemia cell lines. PLoS One 9:e105342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsieh MJ, Lin CW, Yang SF et al (2014a) A combination of pterostilbene with autophagy inhibitors exerts efficient apoptotic characteristics in both chemosensitive and chemoresistant lung cancer cells. Toxicol Sci 137:65–75

    Article  CAS  PubMed  Google Scholar 

  • Hsieh MT, Chen HP, Lu CC et al (2014b) The novel pterostilbene derivative ANK-199 induces autophagic cell death through regulating PI3 kinase class III/beclin 1/Atgrelated proteins in cisplatinresistant CAR human oral cancer cells. Int J Oncol 45:782–794

    Article  CAS  PubMed  Google Scholar 

  • Hsieh MT, Huang LJ, Wu TS et al (2018) Synthesis and antitumor activity of bis(hydroxymethyl)propionate analogs of pterostilbene in cisplatin-resistant human oral cancer cells. Bioorg Med Chem 26:3909–3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu CL, Lin YJ, Ho CT et al (2013) The inhibitory effect of pterostilbene on inflammatory responses during the interaction of 3T3-L1 adipocytes and RAW 264.7 macrophages. J Agric Food Chem 61:602–610

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Plass C, Gerhauser C (2011) Cancer chemoprevention by targeting the epigenome. Curr Drug Targets 12:1925–1956

    Article  CAS  PubMed  Google Scholar 

  • Huang CS, Ho CT, Tu SH et al (2013) Long-term ethanol exposure-induced hepatocellular carcinoma cell migration and invasion through lysyl oxidase activation are attenuated by combined treatment with pterostilbene and curcumin analogues. J Agric Food Chem 61:4326–4335

    Article  CAS  PubMed  Google Scholar 

  • Huang XY, Zhang SZ, Wang WX (2014) Enhanced antitumor efficacy with combined administration of astragalus and pterostilbene for melanoma. Asian Pac J Cancer Prev 15:1163–1169

    Article  PubMed  Google Scholar 

  • Huang WC, Chan ML, Chen MJ et al (2016) Modulation of macrophage polarization and lung cancer cell stemness by MUC1 and development of a related small-molecule inhibitor pterostilbene. Oncotarget 7:39363–39375

    PubMed  PubMed Central  Google Scholar 

  • Huang Y, Du J, Mi Y et al (2018) Long Non-coding RNAs contribute to the inhibition of proliferation and EMT by pterostilbene in human breast cancer. Front Oncol 8:629

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung CM, Liu LC, Ho CT et al (2017) Pterostilbene enhances TRAIL-induced apoptosis through the induction of death receptors and downregulation of cell survival proteins in TRAIL-resistance triple negative breast cancer cells. J Agric Food Chem 65:11179–11191

    Article  CAS  PubMed  Google Scholar 

  • Huynh TT, Lin CM, Lee WH et al (2015) Pterostilbene suppressed irradiation-resistant glioma stem cells by modulating GRP78/miR-205 axis. J Nutr Biochem 26:466–475

    Article  CAS  PubMed  Google Scholar 

  • Jang M, Cai L, Udeani GO et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    Article  CAS  PubMed  Google Scholar 

  • Joseph JA, Fisher DR, Cheng V et al (2008) Cellular and behavioral effects of stilbene resveratrol analogues: implications for reducing the deleterious effects of aging. J Agric Food Chem 56:10544–10551

    Article  CAS  PubMed  Google Scholar 

  • Kai L, Levenson AS (2011) Combination of resveratrol and antiandrogen flutamide has synergistic effect on androgen receptor inhibition in prostate cancer cells. Anticancer Res 31:3323–3330

    CAS  PubMed  Google Scholar 

  • Kai L, Samuel SK, Levenson AS (2010) Resveratrol enhances p53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. Int J Cancer 126:1538–1548

    CAS  PubMed  Google Scholar 

  • Kai L, Wang J, Ivanovic M et al (2011) Targeting prostate cancer angiogenesis through metastasis-associated protein 1 (MTA1). Prostate 71:268–280

    Article  CAS  PubMed  Google Scholar 

  • Kala R, Tollefsbol TO (2016) A novel combinatorial epigenetic therapy using resveratrol and pterostilbene for restoring estrogen receptor-alpha (ERalpha) expression in ERalpha-negative breast cancer cells. PLoS One 11:e0155057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kala R, Shah HN, Martin SL et al (2015) Epigenetic-based combinatorial resveratrol and pterostilbene alters DNA damage response by affecting SIRT1 and DNMT enzyme expression, including SIRT1-dependent gamma-H2AX and telomerase regulation in triple-negative breast cancer. BMC Cancer 15:672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kapetanovic IM, Muzzio M, Huang Z et al (2011) Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer Chemother Pharmacol 68:593–601

    Article  CAS  PubMed  Google Scholar 

  • Khromova NV, Kopnin PB, Stepanova EV et al (2009) p53 hot-spot mutants increase tumor vascularization via ROS-mediated activation of the HIF1/VEGF-A pathway. Cancer Lett 276:143–151

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Koyanagi T, Mochly-Rosen D (2011) PKCdelta activation mediates angiogenesis via NADPH oxidase activity in PC-3 prostate cancer cells. Prostate 71:946–954

    Article  CAS  PubMed  Google Scholar 

  • Ko HS, Kim JS, Cho SM et al (2014) Urokinase-type plasminogen activator expression and Rac1/WAVE-2/Arp2/3 pathway are blocked by pterostilbene to suppress cell migration and invasion in MDA-MB-231 cells. Bioorg Med Chem Lett 24:1176–1179

    Article  CAS  PubMed  Google Scholar 

  • Ko CP, Lin CW, Chen MK et al (2015) Pterostilbene induce autophagy on human oral cancer cells through modulation of Akt and mitogen-activated protein kinase pathway. Oral Oncol 51:593–601

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Chen G, Xu Z et al (2016) Pterostilbene induces apoptosis and cell cycle arrest in diffuse large B-cell lymphoma cells. Sci Rep 6:37417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostin SF, McDonald DE, McFadden DW (2012) Inhibitory effects of (-)-epigallocatechin-3-gallate and pterostilbene on pancreatic cancer growth in vitro. J Surg Res 177:255–262

    Article  CAS  PubMed  Google Scholar 

  • Kosuru R, Rai U, Prakash S et al (2016) Promising therapeutic potential of pterostilbene and its mechanistic insight based on preclinical evidence. Eur J Pharmacol 789:229–243

    Article  CAS  PubMed  Google Scholar 

  • Kou X, Kirberger M, Yang Y et al (2013) Natural products for cancer prevention associated with Nrf2–ARE pathway. Food Sci Hum Wellness 2:22–28

    Article  Google Scholar 

  • Kumar A, Levenson AS (2018) Epigenetic mechanisms of resveratrol and its analogs in cancer prevention and treatment. In: Bishayee A, Bhatia D (eds) Epigenetics of cancer prevention. Academic, London, pp 169–186

    Google Scholar 

  • Kumar R, Wang RA, Bagheri-Yarmand R (2003) Emerging roles of MTA family members in human cancers. Semin Oncol 30:30–37

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Lin SY, Dhar S et al (2014) Stilbenes inhibit androgen receptor expression in 22Rv1 castrate-resistant prostate cancer cells. J Med Active Plants 3:1–8

    Google Scholar 

  • Kumar A, Dhar S, Rimando AM et al (2015) Epigenetic potential of resveratrol and analogs in preclinical models of prostate cancer. Ann N Y Acad Sci 1348:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Butt NA, Levenson AS (2016) Natural epigenetic-modifying molecules in medical therapy. In: Tollefsbol T (ed) Medical epigenetics. Elsevier, London, pp 747–798

    Chapter  Google Scholar 

  • Kumar A, Rimando AM, Levenson AS (2017) Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer. Ann N Y Acad Sci 1403:15–26

    Article  CAS  PubMed  Google Scholar 

  • Langcake P, Cornford CA, Pryce RJ (1979) Identification of pterostilbene as a phytoalexin from Vitis vinifera leaves. Phytochemistry 18:1025–1027

    Article  CAS  Google Scholar 

  • Lange KW, Li S (2018) Resveratrol, pterostilbene, and dementia. Biofactors 44:83–90

    Article  CAS  PubMed  Google Scholar 

  • Lau A, Villeneuve NF, Sun Z et al (2008) Dual roles of Nrf2 in cancer. Pharmacol Res 58:262–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SR, Yang KS, Kwon J et al (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277:20336–20342

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Kim Y, Jeong JH et al (2016) ATM/CHK/p53 pathway dependent chemopreventive and therapeutic activity on lung cancer by pterostilbene. PLoS One 11:e0162335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levenson AS, Kumar A, Zhang X (2014) MTA family of proteins in prostate cancer: biology, significance, and therapeutic opportunities. Cancer Metastasis Rev 33:929–942

    Article  CAS  PubMed  Google Scholar 

  • Li K, Dias SJ, Rimando AM et al (2013) Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer. PLoS One 8:e57542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Ruzhi D, Hua X et al (2016) Blueberry component pterostilbene protects corneal epithelial cells from inflammation via anti-oxidative pathway. Sci Rep 6:19408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin HS, Ho PC (2009) A rapid HPLC method for the quantification of 3,5,4′-trimethoxy-trans-stilbene (TMS) in rat plasma and its application in pharmacokinetic study. J Pharm Biomed Anal 49:387–392

    Article  CAS  PubMed  Google Scholar 

  • Lin HS, Yue BD, Ho PC (2009) Determination of pterostilbene in rat plasma by a simple HPLC-UV method and its application in pre-clinical pharmacokinetic study. Biomed Chromatogr 23:1308–1315

    Article  CAS  PubMed  Google Scholar 

  • Lin VC, Tsai YC, Lin JN et al (2012) Activation of AMPK by pterostilbene suppresses lipogenesis and cell-cycle progression in p53 positive and negative human prostate cancer cells. J Agric Food Chem 60:6399–6407

    Article  CAS  PubMed  Google Scholar 

  • Lin CW, Chou YE, Chiou HL et al (2014) Pterostilbene suppresses oral cancer cell invasion by inhibiting MMP-2 expression. Expert Opin Ther Targets 18:1109–1120

    Article  CAS  PubMed  Google Scholar 

  • Link A, Balaguer F, Goel A (2010) Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem Pharmacol 80:1771–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wang L, Wu Y et al (2013) Pterostilbene exerts antitumor activity against human osteosarcoma cells by inhibiting the JAK2/STAT3 signaling pathway. Toxicology 304:120–131

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Fan C, Yu L et al (2016) Pterostilbene exerts an anti-inflammatory effect via regulating endoplasmic reticulum stress in endothelial cells. Cytokine 77:88–97

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Yang X, Geng M et al (2018) Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer therapy. Acta Pharm Sin B 8:552–562

    Article  PubMed  PubMed Central  Google Scholar 

  • Lombardi G, Vannini S, Blasi F et al (2015) In vitro safety/protection assessment of resveratrol and pterostilbene in a Human Hepatoma Cell Line (HepG2). Nat Prod Commun 10:1403–1408

    PubMed  Google Scholar 

  • Ma Q, He X (2012) Molecular basis of electrophilic and oxidative defense: promises and perils of Nrf2. Pharmacol Rev 64:1055–1081

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Zhang J, Liu S et al (2012) Nrf2 knockdown by shRNA inhibits tumor growth and increases efficacy of chemotherapy in cervical cancer. Cancer Chemother Pharmacol 69:485–494

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Yang Y, Di S et al (2017) Pterostilbene exerts anticancer activity on non-small-cell lung cancer via activating endoplasmic reticulum stress. Sci Rep 7:8091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mak KK, Wu AT, Lee WH et al (2013) Pterostilbene, a bioactive component of blueberries, suppresses the generation of breast cancer stem cells within tumor microenvironment and metastasis via modulating NF-kappaB/microRNA 448 circuit. Mol Nutr Food Res 57:1123–1134

    Article  CAS  PubMed  Google Scholar 

  • Mannal P, McDonald D, McFadden D (2010a) Pterostilbene and tamoxifen show an additive effect against breast cancer in vitro. Am J Surg 200:577–580

    Article  CAS  PubMed  Google Scholar 

  • Mannal PW, Alosi JA, Schneider JG, McDonald DE, McFadden DW (2010b) Pterostilbene inhibits pancreatic cancer in vitro. J Gastrointest Surg 14(5):873–879

    Article  PubMed  Google Scholar 

  • Maurya R, Ray AB, Duah FK et al (1984) Constituents of Pterocarpus marsupium. J Nat Prod 47:179–181

    Article  CAS  Google Scholar 

  • Maurya R, Singh R, Deepak M et al (2004) Constituents of Pterocarpus marsupium: an ayurvedic crude drug. Phytochemistry 65:915–920

    Article  CAS  PubMed  Google Scholar 

  • McCormack D, McFadden D (2012) Pterostilbene and cancer: current review. J Surg Res 173:e53–e61

    Article  CAS  PubMed  Google Scholar 

  • McCormack D, Schneider J, McDonald D et al (2011) The antiproliferative effects of pterostilbene on breast cancer in vitro are via inhibition of constitutive and leptin-induced Janus kinase/signal transducer and activator of transcription activation. Am J Surg 202:541–544

    Article  CAS  PubMed  Google Scholar 

  • McCormack DE, Mannal P, McDonald D et al (2012) Genomic analysis of pterostilbene predicts its antiproliferative effects against pancreatic cancer in vitro and in vivo. J Gastrointest Surg 16:1136–1143

    Article  PubMed  PubMed Central  Google Scholar 

  • Mei H, Xiang Y, Mei H et al (2018) Pterostilbene inhibits nutrient metabolism and induces apoptosis through AMPK activation in multiple myeloma cells. Int J Mol Med 42:2676–2688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mena S, Rodriguez ML, Ponsoda X et al (2012) Pterostilbene-induced tumor cytotoxicity: a lysosomal membrane permeabilization-dependent mechanism. PLoS One 7:e44524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell SH, Zhu W, Young CY (1999) Resveratrol inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells. Cancer Res 59:5892–5895

    CAS  PubMed  Google Scholar 

  • Moon D, McCormack D, McDonald D et al (2013) Pterostilbene induces mitochondrially derived apoptosis in breast cancer cells in vitro. J Surg Res 180:208–215

    Article  CAS  PubMed  Google Scholar 

  • Moyad MA, Carroll PR (2004a) Lifestyle recommendations to prevent prostate cancer, part I: time to redirect our attention? Urol Clin North Am 31:289–300

    Article  PubMed  Google Scholar 

  • Moyad MA, Carroll PR (2004b) Lifestyle recommendations to prevent prostate cancer, part II: time to redirect our attention? Urol Clin North Am 31:301–311

    Article  PubMed  Google Scholar 

  • Nikhil K, Sharan S, Chakraborty A et al (2014a) Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice. Exp Cell Res 320:311–328

    Article  CAS  PubMed  Google Scholar 

  • Nikhil K, Sharan S, Chakraborty A et al (2014b) Pterostilbene-isothiocyanate conjugate suppresses growth of prostate cancer cells irrespective of androgen receptor status. PLoS One 9:e93335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nikhil K, Sharan S, Singh AK et al (2014c) Anticancer activities of pterostilbene-isothiocyanate conjugate in breast cancer cells: involvement of PPARgamma. PLoS One 9:e104592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nutakul W, Sobers HS, Qiu P et al (2011) Inhibitory effects of resveratrol and pterostilbene on human colon cancer cells: a side-by-side comparison. J Agric Food Chem 59:10964–10970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan MH, Chang YH, Badmaev V et al (2007) Pterostilbene induces apoptosis and cell cycle arrest in human gastric carcinoma cells. J Agric Food Chem 55:7777–7785

    Article  CAS  PubMed  Google Scholar 

  • Pan MH, Chang YH, Tsai ML et al (2008) Pterostilbene suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. J Agric Food Chem 56:7502–7509

    Article  CAS  PubMed  Google Scholar 

  • Pan MH, Chiou YS, Chen WJ et al (2009) Pterostilbene inhibited tumor invasion via suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Carcinogenesis 30:1234–1242

    Article  CAS  PubMed  Google Scholar 

  • Pan MH, Lin YT, Lin CL et al (2011) Suppression of Heregulin-beta1/HER2-Modulated Invasive and Aggressive Phenotype of Breast Carcinoma by Pterostilbene via Inhibition of Matrix Metalloproteinase-9, p38 Kinase Cascade and Akt Activation. Evid Based Complement Alternat Med 2011:562187

    PubMed  PubMed Central  Google Scholar 

  • Pan C, Hu Y, Li J et al (2014) Estrogen receptor-alpha36 is involved in pterostilbene-induced apoptosis and anti-proliferation in in vitro and in vivo breast cancer. PLoS One 9:e104459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papandreou I, Verras M, McNeil B et al (2015) Plant stilbenes induce endoplasmic reticulum stress and their anti-cancer activity can be enhanced by inhibitors of autophagy. Exp Cell Res 339:147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul B, Masih I, Deopujari J et al (1999) Occurrence of resveratrol and pterostilbene in age-old darakchasava, an ayurvedic medicine from India. J Ethnopharmacol 68:71–76

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Rimando AM, Lee HJ et al (2009) Anti-inflammatory action of pterostilbene is mediated through the p38 mitogen-activated protein kinase pathway in colon cancer cells. Cancer Prev Res (Phila) 2:650–657

    Article  CAS  Google Scholar 

  • Paul S, DeCastro AJ, Lee HJ et al (2010) Dietary intake of pterostilbene, a constituent of blueberries, inhibits the beta-catenin/p65 downstream signaling pathway and colon carcinogenesis in rats. Carcinogenesis 31:1272–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei HL, Mu DM, Zhang B (2017) Anticancer activity of pterostilbene in human ovarian cancer cell lines. Med Sci Monit 23:3192–3199

    Article  PubMed  PubMed Central  Google Scholar 

  • Pezet R, Pont V (1988) Demonstration of pterostilbene in clusters of Vitis vinifera. Plant Physiol Biochem (Paris) 26:603–607

    CAS  Google Scholar 

  • Priego S, Feddi F, Ferrer P et al (2008) Natural polyphenols facilitate elimination of HT-29 colorectal cancer xenografts by chemoradiotherapy: a Bcl-2- and superoxide dismutase 2-dependent mechanism. Mol Cancer Ther 7:3330–3342

    Article  CAS  PubMed  Google Scholar 

  • Pudenz M, Roth K, Gerhauser C (2014) Impact of soy isoflavones on the epigenome in cancer prevention. Nutrients 6:4218–4272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qian YY, Liu ZS, Pan DY et al (2017) Tumoricidal activities of pterostilbene depend upon destabilizing the MTA1-NuRD complex and enhancing P53 acetylation in hepatocellular carcinoma. Exp Ther Med 14:3098–3104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian YY, Liu ZS, Yan HJ et al (2018a) Pterostilbene inhibits MTA1/HDAC1 complex leading to PTEN acetylation in hepatocellular carcinoma. Biomed Pharmacother 101:852–859

    Article  CAS  PubMed  Google Scholar 

  • Qian YY, Liu ZS, Zhang Z et al (2018b) Pterostilbene increases PTEN expression through the targeted downregulation of microRNA-19a in hepatocellular carcinoma. Mol Med Rep 17:5193–5201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajagopal C, Lankadasari MB, Aranjani JM et al (2018) Targeting oncogenic transcription factors by polyphenols: a novel approach for cancer therapy. Pharmacol Res 130:273–291

    Article  CAS  PubMed  Google Scholar 

  • Ramezani G, Pourgheysari B, Shirzad H et al (2019) Pterostilbene increases Fas expression in T-lymphoblastic leukemia cell lines. Res Pharm Sci 14:55–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Remsberg CM, Yanez JA, Ohgami Y et al (2008) Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother Res 22:169–179

    Article  CAS  PubMed  Google Scholar 

  • Riche DM, McEwen CL, Riche KD et al (2013) Analysis of safety from a human clinical trial with pterostilbene. J Toxicol 2013:463595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rimando AM, Barney DL (2005) Resveratrol and naturally occurring analogues in Vaccinium species. Acta Hort 680:137–143

    Article  CAS  Google Scholar 

  • Rimando AM, Cuendet M, Desmarchelier C et al (2002) Cancer chemopreventive and antioxidant activities of pterostilbene, a naturally occurring analogue of resveratrol. J Agric Food Chem 50:3453–3457

    Article  CAS  PubMed  Google Scholar 

  • Rimando AM, Kalt W, Magee JB et al (2004) Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J Agric Food Chem 52:4713–4719

    Article  CAS  PubMed  Google Scholar 

  • Robb EL, Stuart JA (2014) The stilbenes resveratrol, pterostilbene and piceid affect growth and stress resistance in mammalian cells via a mechanism requiring estrogen receptor beta and the induction of Mn-superoxide dismutase. Phytochemistry 98:164–173

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Bonilla P, Lopez-Nicolas JM, Mendez-Cazorla L et al (2011) Development of a reversed phase high performance liquid chromatography method based on the use of cyclodextrins as mobile phase additives to determine pterostilbene in blueberries. J Chromatogr B Analyt Technol Biomed Life Sci 879:1091–1097

    Article  CAS  PubMed  Google Scholar 

  • Roslie H, Chan KM, Rajab NF et al (2012) 3,5-dibenzyloxy-4′-hydroxystilbene induces early caspase-9 activation during apoptosis in human K562 chronic myelogenous leukemia cells. J Toxicol Sci 37:13–21

    Article  CAS  PubMed  Google Scholar 

  • Ross SA, Davis CD (2011) MicroRNA, nutrition, and cancer prevention. Adv Nutr 2:472–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahin K, Yenice E, Bilir B et al (2019) Genistein prevents development of spontaneous ovarian cancer and inhibits tumor growth in hen model. Cancer Prev Res (Phila) 12:135–146

    Article  Google Scholar 

  • Schmidt L, Baskaran S, Johansson P et al (2016) Case-specific potentiation of glioblastoma drugs by pterostilbene. Oncotarget 7:73200–73215

    PubMed  PubMed Central  Google Scholar 

  • Schneider JG, Alosi JA, McDonald DE et al (2009) Effects of pterostilbene on melanoma alone and in synergy with inositol hexaphosphate. Am J Surg 198:679–684

    Article  CAS  PubMed  Google Scholar 

  • Schneider JG, Alosi JA, McDonald DE, McFadden DW (2010) Pterostilbene inhibits lung cancer through induction of apoptosis. J Surg Res 161(1):18–22

    Article  CAS  PubMed  Google Scholar 

  • Scott E, Steward WP, Gescher AJ et al (2012) Resveratrol in human cancer chemoprevention-choosing the ‘right’ dose. Mol Nutr Food Res 56:7–13

    Article  CAS  PubMed  Google Scholar 

  • Seo SS, Oh HY, Lee JK et al (2016) Combined effect of diet and cervical microbiome on the risk of cervical intraepithelial neoplasia. Clin Nutr 35:1434–1441

    Article  PubMed  Google Scholar 

  • Seshadri TR (1972) Polyphenols of Pterocarpus and Dalbergia woods. Phytochemistry 11:881–898

    Article  CAS  Google Scholar 

  • Shao X, Chen X, Badmaev V et al (2010) Structural identification of mouse urinary metabolites of pterostilbene using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 24:1770–1778

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Rong H (2015) Pterostilbene impact on retinal endothelial cells under high glucose environment. Int J Clin Exp Pathol 8:12589–12594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shetty SR, Babu S, Kumari S et al (2013) Salivary ascorbic acid levels in betel quid chewers: a biochemical study. South Asian J Cancer 2:142–144

    Article  PubMed  PubMed Central  Google Scholar 

  • Siedlecka-Kroplewska K, Jozwik A, Kaszubowska L et al (2012) Pterostilbene induces cell cycle arrest and apoptosis in MOLT4 human leukemia cells. Folia Histochem Cytobiol 50:574–580

    Article  CAS  PubMed  Google Scholar 

  • Siedlecka-Kroplewska K, Jozwik A, Boguslawski W et al (2013) Pterostilbene induces accumulation of autophagic vacuoles followed by cell death in HL60 human leukemia cells. J Physiol Pharmacol 64:545–556

    CAS  PubMed  Google Scholar 

  • Song Z, Han S, Pan X et al (2015) Pterostilbene mediates neuroprotection against oxidative toxicity via oestrogen receptor alpha signalling pathways. J Pharm Pharmacol 67:720–730

    Article  CAS  PubMed  Google Scholar 

  • Storniolo CE, Moreno JJ (2019) Resveratrol analogs with antioxidant activity inhibit intestinal epithelial cancer Caco-2 cell growth by modulating arachidonic acid cascade. J Agric Food Chem 67:819–828

    Article  CAS  PubMed  Google Scholar 

  • Su CM, Lee WH, Wu AT et al (2015) Pterostilbene inhibits triple-negative breast cancer metastasis via inducing microRNA-205 expression and negatively modulates epithelial-to-mesenchymal transition. J Nutr Biochem 26:675–685

    Article  CAS  PubMed  Google Scholar 

  • Suh N, Paul S, Hao X et al (2007) Pterostilbene, an active constituent of blueberries, suppresses aberrant crypt foci formation in the azoxymethane-induced colon carcinogenesis model in rats. Clin Cancer Res 13:350–355

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Wu X, Cai X et al (2016) Identification of pinostilbene as a major colonic metabolite of pterostilbene and its inhibitory effects on colon cancer cells. Mol Nutr Food Res 60:1924–1932

    Article  CAS  PubMed  Google Scholar 

  • Tam KW, Ho CT, Tu SH et al (2018) alpha-Tocopherol succinate enhances pterostilbene anti-tumor activity in human breast cancer cells in vivo and in vitro. Oncotarget 9:4593–4606

    Article  PubMed  Google Scholar 

  • Tili E, Michaille JJ (2011) Resveratrol, MicroRNAs, inflammation, and cancer. J Nucleic Acids 2011:102431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tippani R, Prakhya LJ, Porika M et al (2014) Pterostilbene as a potential novel telomerase inhibitor: molecular docking studies and its in vitro evaluation. Curr Pharm Biotechnol 14:1027–1035

    Article  PubMed  CAS  Google Scholar 

  • Toh Y, Nicolson GL (2009) The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clin Exp Metastasis 26:215–227

    Article  CAS  PubMed  Google Scholar 

  • Tolba MF, Abdel-Rahman SZ (2015) Pterostilbine, an active component of blueberries, sensitizes colon cancer cells to 5-fluorouracil cytotoxicity. Sci Rep 5:15239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolomeo M, Grimaudo S, Di Cristina A et al (2005) Pterostilbene and 3′-hydroxypterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells. Int J Biochem Cell Biol 37:1709–1726

    Article  CAS  PubMed  Google Scholar 

  • Tota JE, Anderson WF, Coffey C et al (2017) Rising incidence of oral tongue cancer among white men and women in the United States, 1973–2012. Oral Oncol 67:146–152

    Article  PubMed  Google Scholar 

  • Tsai ML, Lai CS, Chang YH et al (2012) Pterostilbene, a natural analogue of resveratrol, potently inhibits 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin carcinogenesis. Food Funct 3:1185–1194

    Article  CAS  PubMed  Google Scholar 

  • Tsai HY, Ho CT, Chen YK (2017) Biological actions and molecular effects of resveratrol, pterostilbene, and 3′-hydroxypterostilbene. J Food Drug Anal 25:134–147

    Article  CAS  PubMed  Google Scholar 

  • Vanden Berghe W (2012) Epigenetic impact of dietary polyphenols in cancer chemoprevention: lifelong remodeling of our epigenomes. Pharmacol Res 65:565–576

    Article  CAS  Google Scholar 

  • Wakimoto R, Ono M, Takeshima M et al (2017) Differential Anticancer Activity of Pterostilbene Against Three Subtypes of Human Breast Cancer Cells. Anticancer Res 37:6153–6159

    CAS  PubMed  Google Scholar 

  • Wang TT, Schoene NW, Kim YS et al (2010) Differential effects of resveratrol and its naturally occurring methylether analogs on cell cycle and apoptosis in human androgen-responsive LNCaP cancer cells. Mol Nutr Food Res 54:335–344

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ding L, Wang X et al (2012) Pterostilbene simultaneously induces apoptosis, cell cycle arrest and cyto-protective autophagy in breast cancer cells. Am J Transl Res 4:44–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YJ, Lin JF, Cheng LH et al (2017a) Pterostilbene prevents AKT-ERK axis-mediated polymerization of surface fibronectin on suspended lung cancer cells independently of apoptosis and suppresses metastasis. J Hematol Oncol 10:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang YL, Shen Y, Xu JP et al (2017b) Pterostilbene suppresses human endometrial cancer cells in vitro by down-regulating miR-663b. Acta Pharmacol Sin 38:1394–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wawszczyk J, Kapral M, Hollek A et al (2014) In vitro evaluation of antiproliferative and cytotoxic properties of pterostilbene against human colon cancer cells. Acta Pol Pharm 71:1051–1055

    PubMed  Google Scholar 

  • Wen W, Lowe G, Roberts CM et al (2017) Pterostilbene, a natural phenolic compound, synergizes the antineoplastic effects of megestrol acetate in endometrial cancer. Sci Rep 7:12754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wen W, Lowe G, Roberts CM et al (2018) Pterostilbene suppresses ovarian cancer growth via induction of apoptosis and blockade of cell cycle progression involving inhibition of the STAT3 pathway. Int J Mol Sci 19(7). https://doi.org/10.3390/ijms19071983

  • Wenzel E, Somoza V (2005) Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res 49:472–481

    Article  CAS  PubMed  Google Scholar 

  • Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313(Pt 1):17–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CH, Hong BH, Ho CT et al (2015) Targeting cancer stem cells in breast cancer: potential anticancer properties of 6-shogaol and pterostilbene. J Agric Food Chem 63:2432–2441

    Article  CAS  PubMed  Google Scholar 

  • Xie B, Xu Z, Hu L et al (2016) Pterostilbene inhibits human multiple myeloma cells via ERK1/2 and JNK pathway in vitro and in vivo. Int J Mol Sci 17

    Google Scholar 

  • Xing F, Liu Y, Sharma S, Wu K, Chan MD, Lo H-W, Carpenter RL, Metheny-Barlow LJ, Zhou X, Qasem SA, Pasche B, Watabe K (2016) Activation of the c-Met pathway mobilizes an inflammatory network in the brain microenvironment to promote brain metastasis of breast cancer. Cancer Res 76(17):4970–4980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Yan X, Duan W et al (2013) Pterostilbene exerts antitumor activity via the Notch1 signaling pathway in human lung adenocarcinoma cells. PLoS One 8:e62652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon HS, Hyun CG, Lee NH et al (2016) Comparative depigmentation effects of resveratrol and its two methyl analogues in alpha-melanocyte stimulating hormone-triggered B16/F10 murine melanoma cells. Prev Nutr Food Sci 21:155–159

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Wang S, Zhang X et al (2017) Pterostilbene protects against myocardial ischemia/reperfusion injury via suppressing oxidative/nitrative stress and inflammatory response. Int Immunopharmacol 43:7–15

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Zhang Y, Chen G et al (2018) Targeting the PI3K/Akt/mTOR signaling pathway by pterostilbene attenuates mantle cell lymphoma progression. Acta Biochim Biophys Sin Shanghai 50:782–792

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang Y (2016) Pterostilbene, a novel natural plant conduct, inhibits high fat-induced atherosclerosis inflammation via NF-kappaB signaling pathway in Toll-like receptor 5 (TLR5) deficient mice. Biomed Pharmacother 81:345–355

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Wang XQ, Chen HY et al (2014) Involvement of the Nrf2 pathway in the regulation of pterostilbene-induced apoptosis in HeLa cells via ER stress. J Pharmacol Sci 126:216–229

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang J, Xu L et al (2018) Emerging actions of pterostilebene on cancer research. Zhongguo Fei Ai Za Zhi 21:931–936

    PubMed  Google Scholar 

  • Zhou Y, Li Y, Zhou T et al (2016) Dietary natural products for prevention and treatment of liver cancer. Nutrients 8:156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zielinska-Przyjemska M, Kaczmarek M, Krajka-Kuzniak V et al (2017) The effect of resveratrol, its naturally occurring derivatives and tannic acid on the induction of cell cycle arrest and apoptosis in rat C6 and human T98G glioma cell lines. Toxicol In Vitro 43:69–75

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The writing of this chapter was supported in part by the Department of Defense PCRP under Award W81XWH-13-10370 and the National Cancer Institute of the National Institutes of Health under Award Number R15CA216070 to A.S. Levenson. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Department of Defense or the National Institutes of Health. The authors thank Gabriela Sikorska (LIU Pharmacy) for drawing the chemical structures and Elena V. Levenson for editing the manuscript.

Dedication

Dedicated to a dear friend and colleague, the late Dr. Agnes M. Rimando.

This chapter was written ten months after the passing of a dear friend and colleague, Agnes M. Rimando, who died unexpectedly and tragically in the hospital after emergency surgery. She was full of plans for future projects and exciting conferences, and if she were still with us, she would be a co-author of this chapter. In 2002, Agnes M. Rimando was among the first to isolate pterostilbene from blueberries and, in 2004, she was the first to study the antioxidant and chemopreventive activity of pterostilbene in a cancer model. She understood the potential of pterostilbene as a potent neuromodulator in aging and Alzheimer’s, the beneficial effects of pterostilbene in metabolic disorders, including diabetes, and for cancer chemoprevention.

Agnes had a productive career as a medicinal chemist and she understood that in trying to use pterostilbene for disease prevention, including cancer, there needed to be a close collaboration between her and cancer research investigators and clinicians. That is how we began working together in 2010, when I moved from Northwestern University Medical School in Chicago to continue my research in prostate and breast cancer at the newly established Cancer Institute at the University of Mississippi Medical Center, Jackson, MS. Agnes was employed by the United States Department of Agriculture, Agriculture Research Service and was working at the Natural Products Utilization Research Unit, Oxford, MS at the time. We met at a seminar I was giving about my promising studies with resveratrol in cancer, where I pleaded with my audience for collaboration with a medicinal chemist who was interested in anticancer activity of more potent resveratrol analogs. The rest is history.

This book chapter is written testimony to the memory of Dr. Agnes M. Rimando and her dream of using pterostilbene as a chemopreventive agent in cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anait S. Levenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Levenson, A.S., Kumar, A. (2020). Pterostilbene as a Potent Chemopreventive Agent in Cancer. In: Pezzuto, J., Vang, O. (eds) Natural Products for Cancer Chemoprevention. Springer, Cham. https://doi.org/10.1007/978-3-030-39855-2_3

Download citation

Publish with us

Policies and ethics