Skip to main content

Grape Chemopreventive Agents Against Angiogenesis and Metastasis

  • Chapter
  • First Online:
Natural Products for Cancer Chemoprevention

Abstract

Recent advances in the identification of efficient diagnostic means, novel targets and therapeutics, have resulted in a significant decline in cancer mortality. However, based on recent estimates from the American Cancer Society, 1,762,450 new cancer cases and 606,880 cancer-deaths are projected to occur in the United States, in the year 2019. Therefore, an expedition for more efficient means of cancer management continues. Cancer cells cannot prosper without an adequate supply of blood through angiogenesis, a process of forming new blood vessels. Angiogenesis is a multistep process controlled by several proangiogenic and antiangiogenic factors. Dysregulated angiogenesis contributes to unlimited growth and metastasis of cancer, with fatal consequences. In a quest for novel agents/drugs to curtail metastatic spread of cancer, the dietary agents are being actively investigated. Grapes are, arguably, one of the most valuable fruits, containing more than 1600 phytochemicals. Among these, resveratrol, catechin, epicatechin, peonidin, cyanidin, malvidin, kaempferol, isorhamnetin, taxifolin, and quercetin are the top ten compounds that account for more than 70% of the grape polyphenols. These grape constituents alone, in combinations, or as whole grape products, have been shown to have anticancer activities. In this chapter, we have discussed the mechanistic action(s) of grape agents against angiogenesis and metastasis, both of which are crucial requirements for cancer survival and progression. Studies have shown how grape chemopreventive agents are proficient at challenging the proangiogenic and antiangiogenic factors necessary for tumor angiogenesis and metastasis. This makes grape antioxidants very promising in cancer management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alameddine RS, Otrock ZK, Awada A, Shamseddine A (2013) Crosstalk between HER2 signaling and angiogenesis in breast cancer: molecular basis, clinical applications and challenges. Curr Opin Oncol 25:313–324

    Article  CAS  PubMed  Google Scholar 

  • Anborgh PH, Mutrie JC, Tuck AB, Chambers AF (2010) Role of the metastasis-promoting protein osteopontin in the tumour microenvironment. J Cell Mol Med 14:2037–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansiaux R, Baudelet C, Jordan BF, Beghein N, Sonveaux P, De Wever J et al (2005) Thalidomide radiosensitizes tumors through early changes in the tumor microenvironment. Clin Cancer Res 11:743–750

    CAS  PubMed  Google Scholar 

  • Balakrishnan S, Bhat FA, Raja Singh P, Mukherjee S, Elumalai P, Das S et al (2016) Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif 49:678–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baron-Menguy C, Bocquet A, Guihot AL, Chappard D, Amiot MJ, Andriantsitohaina R et al (2007) Effects of red wine polyphenols on postischemic neovascularization model in rats: low doses are proangiogenic, high doses anti-angiogenic. FASEB J 21:3511–3521

    Article  CAS  PubMed  Google Scholar 

  • Bashir R, Vale PR, Isner JM, Losordo DW (2002) Angiogenic gene therapy: pre-clinical studies and phase I clinical data. Kidney Int 61:S110–S114

    Article  PubMed  Google Scholar 

  • Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman AY, Motechin RA, Wiesenfeld MY, Holz MK (2017) The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 1

    Google Scholar 

  • Bhat FA, Sharmila G, Balakrishnan S, Arunkumar R, Elumalai P, Suganya S et al (2014) Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway. J Nutr Biochem 25:1132–1139

    Article  CAS  PubMed  Google Scholar 

  • Bielenberg DR, Zetter BR (2015) The contribution of angiogenesis to the process of metastasis. Cancer J 21:267–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton LJ, Smith BA, Smith BN, Loyd Q, Nagappan P, McKeithen D et al (2015) Muscadine grape skin extract can antagonize Snail-cathepsin L-mediated invasion, migration and osteoclastogenesis in prostate and breast cancer cells. Carcinogenesis 36:1019–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Z, Fang J, Xia C, Shi X, Jiang BH (2004) Trans-3,4,5′-trihydroxystibene inhibits hypoxia-inducible factor 1alpha and vascular endothelial growth factor expression in human ovarian cancer cells. Clin Cancer Res 10:5253–5263

    Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catalgol B, Batirel S, Taga Y, Ozer NK (2012) Resveratrol: French paradox revisited. Front Pharmacol 3:141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan CY, Lien CH, Lee MF, Huang CY (2016) Quercetin suppresses cellular migration and invasion in human head and neck squamous cell carcinoma (HNSCC). Biomedicine (Taipei) 6:15

    Article  Google Scholar 

  • Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn LL (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA 97:14608–14613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Che DN, Xie GH, Cho BO, Shin JY, Kang HJ, Jang SI (2017) Protective effects of grape stem extract against UVB-induced damage in C57BL mice skin. J Photochem Photobiol B 173:551–559

    Article  CAS  PubMed  Google Scholar 

  • Chen JC, Chen Y, Lin JH, Wu JM, Tseng SH (2006) Resveratrol suppresses angiogenesis in gliomas: evaluation by color Doppler ultrasound. Anticancer Res 26:1237–1245

    CAS  PubMed  Google Scholar 

  • Chen C, Zhao S, Karnad A, Freeman JW (2018a) The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol 11:64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen X, Gu N, Xue C, Li BR (2018b) Plant flavonoid taxifolin inhibits the growth, migration and invasion of human osteosarcoma cells. Mol Med Rep 17:3239–3245

    CAS  PubMed  Google Scholar 

  • Cook NC, Samman S (1996) Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem 7:66–76

    Article  CAS  Google Scholar 

  • Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon PA et al (2013) Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a (13)C-tracer study. Am J Clin Nutr 97:995–1003

    Article  CAS  PubMed  Google Scholar 

  • Dinicola S, Pasqualato A, Cucina A, Coluccia P, Ferranti F, Canipari R et al (2014) Grape seed extract suppresses MDA-MB231 breast cancer cell migration and invasion. Eur J Nutr 53:421–431

    Article  PubMed  Google Scholar 

  • Ebeler SE, Brenneman CA, Kim GS, Jewell WT, Webb MR, Chacon-Rodriguez L et al (2002) Dietary catechin delays tumor onset in a transgenic mouse model. Am J Clin Nutr 76:865–872

    Article  CAS  PubMed  Google Scholar 

  • Fagiani E, Christofori G (2013) Angiopoietins in angiogenesis. Cancer Lett 328:18–26

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Ofstad W, Hawkins D (2010) Antiangiogenesis therapy: a new strategy for cancer treatment. US Pharm 35(7)(oncology suppl):4–9

    Google Scholar 

  • Feng LL, Liu BX, Zhong JY, Sun LB, Yu HS (2014) Effect of grape procyanidins on tumor angiogenesis in liver cancer xenograft models. Asian Pac J Cancer Prev 15:737–741

    Article  PubMed  Google Scholar 

  • Figueiras TS, Neves-Petersen MT, Petersen SB (2011) Activation energy of light induced isomerization of resveratrol. J Fluoresc 21:1897–1906

    Article  CAS  PubMed  Google Scholar 

  • Filip A, Daicoviciu D, Clichici S, Bolfa P, Catoi C, Baldea I et al (2011) The effects of grape seeds polyphenols on SKH-1 mice skin irradiated with multiple doses of UV-B. J Photochem Photobiol B 105:133–142

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Formica JV, Regelson W (1995) Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 33:1061–1080

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Yuan Y, Gan HZ, Peng Q (2015) Resveratrol inhibits the hedgehog signaling pathway and epithelial-mesenchymal transition and suppresses gastric cancer invasion and metastasis. Oncol Lett 9:2381–2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garvin S, Ollinger K, Dabrosin C (2006) Resveratrol induces apoptosis and inhibits angiogenesis in human breast cancer xenografts in vivo. Cancer Lett 231:113–122

    Article  CAS  PubMed  Google Scholar 

  • Gibellini L, Pinti M, Nasi M, Montagna JP, De Biasi S, Roat E et al (2011) Quercetin and cancer chemoprevention. Evid Based Complement Alternat Med 2011:591356

    Article  PubMed  PubMed Central  Google Scholar 

  • Gohji K, Fidler IJ, Tsan R, Radinsky R, von Eschenbach AC, Tsuruo T et al (1994) Human recombinant interferons-beta and -gamma decrease gelatinase production and invasion by human KG-2 renal-carcinoma cells. Int J Cancer 58:380–384

    Article  CAS  PubMed  Google Scholar 

  • Grant SW, Kyshtoobayeva AS, Kurosaki T, Jakowatz J, Fruehauf JP (1998) Mutant p53 correlates with reduced expression of thrombospondin-1, increased angiogenesis, and metastatic progression in melanoma. Cancer Detect Prev 22:185–194

    Article  CAS  PubMed  Google Scholar 

  • Greenwell M, Rahman PK (2015) Medicinal plants: their use in anticancer treatment. Int J Pharm Sci Res 6:4103–4112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Hanausek M, Spears E, Walaszek Z, Kowalczyk MC, Kowalczyk P, Wendel C et al (2011) Inhibition of murine skin carcinogenesis by freeze-dried grape powder and other grape-derived major antioxidants. Nutr Cancer 63:28–38

    CAS  PubMed  Google Scholar 

  • Hoshino J, Park EJ, Kondratyuk TP, Marler L, Pezzuto JM, van Breemen RB et al (2010) Selective synthesis and biological evaluation of sulfate-conjugated resveratrol metabolites. J Med Chem 53:5033–5043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Sun CY, Huang J, Hong L, Zhang L, Chu ZB (2007) Antimyeloma effects of resveratrol through inhibition of angiogenesis. Chin Med J (Engl) 120:1672–1677

    Article  CAS  Google Scholar 

  • Huang CY, Chan CY, Chou IT, Lien CH, Hung HC, Lee MF (2013) Quercetin induces growth arrest through activation of FOXO1 transcription factor in EGFR-overexpressing oral cancer cells. J Nutr Biochem 24:1596–1603

    Article  PubMed  CAS  Google Scholar 

  • Huang WY, Wang J, Liu YM, Zheng QS, Li CY (2014) Inhibitory effect of Malvidin on TNF-alpha-induced inflammatory response in endothelial cells. Eur J Pharmacol 723:67–72

    Article  CAS  PubMed  Google Scholar 

  • Igura K, Ohta T, Kuroda Y, Kaji K (2001) Resveratrol and quercetin inhibit angiogenesis in vitro. Cancer Lett 171:11–16

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Rauf A, Shah ZA, Saeed F, Imran A, Arshad MU et al (2019) Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: a comprehensive review. Phytother Res 33:263–275

    Article  PubMed  Google Scholar 

  • Iqbal S, Lenz HJ (2004) Integration of novel agents in the treatment of colorectal cancer. Cancer Chemother Pharmacol 54(Suppl 1):S32–S39

    CAS  PubMed  Google Scholar 

  • Khanna S, Roy S, Bagchi D, Bagchi M, Sen CK (2001) Upregulation of oxidant-induced VEGF expression in cultured keratinocytes by a grape seed proanthocyanidin extract. Free Radic Biol Med 31:38–42

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Ko YS, Park J, Choi Y, Park JW, Kim Y et al (2016) Forkhead transcription factor FOXO1 inhibits angiogenesis in gastric cancer in relation to SIRT1. Cancer Res Treat 48:345–354

    Article  CAS  PubMed  Google Scholar 

  • Kim SE, Shin SH, Lee JY, Kim CH, Chung IK, Kang HM et al (2018) Resveratrol induces mitochondrial apoptosis and inhibits epithelial-mesenchymal transition in oral squamous cell carcinoma cells. Nutr Cancer 70:125–135

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Deep G, Wempe MF, Agarwal R, Agarwal C (2015) Procyanidin B2 3,3″-di-O-gallate inhibits endothelial cells growth and motility by targeting VEGFR2 and integrin signaling pathways. Curr Cancer Drug Targets 15:14–26

    Google Scholar 

  • Kumar A, D’Silva M, Dholakia K, Levenson AS (2018) In vitro anticancer properties of table grape powder extract (GPE) in prostate cancer. Nutrients 10:1804

    Google Scholar 

  • Labbé D, Provençal M, Lamy S, Boivin D, Gingras D, Béliveau R (2009) The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J Nutr 139:646–652

    Article  PubMed  CAS  Google Scholar 

  • Langley RR, Fidler IJ (2011) The seed and soil hypothesis revisited—the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 128:2527–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Kim JH (2016) Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro. PLoS One 11:e0155264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee SB, Cha KH, Selenge D, Solongo A, Nho CW (2007) The chemopreventive effect of taxifolin is exerted through ARE-dependent gene regulation. Biol Pharm Bull 30:1074–1079

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Han SI, Yun JH, Kim JH (2015a) Quercetin 3-O-glucoside suppresses epidermal growth factor-induced migration by inhibiting EGFR signaling in pancreatic cancer cells. Tumour Biol 36:9385–9393

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Jeong D, Han YS, Baek MJ (2015b) Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann Surg Treat Res 89:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Yang X, Chen C, Cai S, Hu J (2014) Isorhamnetin suppresses colon cancer cell growth through the PI3KAktmTOR pathway. Mol Med Rep 9:935–940

    Article  CAS  PubMed  Google Scholar 

  • Li CL, Yang D, Zhao YW, Qiu Y, Cao X, Yu YY et al (2015) Inhibitory effects of isorhamnetin on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-2/9. Nutr Cancer 67:1191–1200

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Liu RH, Song BB, Li CF, Lin LQ, Zhang CP et al (2010) Antiangiogenetic effects of 4 varieties of grapes in vitro. J Food Sci 75:T99–T104

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Xu J, Wu S, Liu Y, Yu X, Chen J et al (2013) Selective anti-proliferation of HER2-positive breast cancer cells by anthocyanins identified by high-throughput screening. PLoS One 8:e81586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu J, Zhang K, Chen S, Wen W (2009) Grape seed extract inhibits VEGF expression via reducing HIF-1alpha protein expression. Carcinogenesis 30:636–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu JN, Lee WS, Yun JW, Kim MJ, Kim HJ, Kim DC et al (2013) Anthocyanins from Vitis coignetiae Pulliat inhibit cancer invasion and epithelial-mesenchymal transition, but these effects can be attenuated by tumor necrosis factor in human uterine cervical cancer HeLa cells. Evid Based Complement Alternat Med 2013:503043

    PubMed  PubMed Central  Google Scholar 

  • Lu JN, Lee WS, Kim MJ, Yun JW, Jung JH, Yi SM et al (2014) The inhibitory effect of anthocyanins on Akt on invasion and epithelial-mesenchymal transition is not associated with the anti-EGFR effect of the anthocyanins. Int J Oncol 44:1756–1766

    Article  CAS  PubMed  Google Scholar 

  • Lu JN, Panchanathan R, Lee WS, Kim HJ, Kim DH, Choi YH et al (2017) Anthocyanins from the fruit of Vitis coignetiae Pulliat inhibit TNF-augmented cancer proliferation, migration, and invasion in A549 cells. Asian Pac J Cancer Prev 18:2919–2923

    PubMed  PubMed Central  Google Scholar 

  • Luan YY, Liu ZM, Zhong JY, Yao RY, Yu HS (2015) Effect of grape seed proanthocyanidins on tumor vasculogenic mimicry in human triple-negative breast cancer cells. Asian Pac J Cancer Prev 16:531–535

    Article  PubMed  Google Scholar 

  • Luo HT, Jiang BH, King SM, Chen YC (2008) Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids. Nutr Cancer 60:800–809

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Rankin GO, Liu L, Daddysman MK, Jiang BH, Chen YC (2009) Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells. Nutr Cancer 61:554–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Rankin GO, Juliano N, Jiang BH, Chen YC (2012) Kaempferol inhibits VEGF expression and in vitro angiogenesis through a novel ERK-NFkappaB-cMyc-p21 pathway. Food Chem 130:321–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma ZS, Huynh TH, Ng CP, Do PT, Nguyen TH, Huynh H (2004) Reduction of CWR22 prostate tumor xenograft growth by combined tamoxifen-quercetin treatment is associated with inhibition of angiogenesis and cellular proliferation. Int J Oncol 24:1297–1304

    CAS  PubMed  Google Scholar 

  • Maurya AK, Vinayak M (2017) Quercetin attenuates cell survival, inflammation, and angiogenesis via modulation of AKT signaling in murine T-cell lymphoma. Nutr Cancer 69:470–480

    Article  CAS  PubMed  Google Scholar 

  • Mintie CA, Singh CK, Ndiaye MA, Barrett-Wilt GA, Ahmad N (2019) Identification of molecular targets of dietary grape-mediated chemoprevention of ultraviolet B skin carcinogenesis: a comparative quantitative proteomics analysis. J Proteome Res 18(10):3741–3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Dudley JI, Das DK (2010) Dose-dependency of resveratrol in providing health benefits. Dose Response 8:478–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen AV, Martinez M, Stamos MJ, Moyer MP, Planutis K, Hope C et al (2009) Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag Res 1:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira IC, Sciavolino PJ, Lee TH, Vilcek J (1992) Downregulation of interleukin 8 gene expression in human fibroblasts: unique mechanism of transcriptional inhibition by interferon. Proc Natl Acad Sci U S A 89:9049–9053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen JJ, Pohl SO, Deshmukh A, Visweswaran M, Ward NC, Arfuso F et al (2017) The role of Wnt signalling in angiogenesis. Clin Biochem Rev 38:131–142

    PubMed  PubMed Central  Google Scholar 

  • Park SY, Jeong KJ, Lee J, Yoon DS, Choi WS, Kim YK et al (2007) Hypoxia enhances LPA-induced HIF-1alpha and VEGF expression: their inhibition by resveratrol. Cancer Lett 258:63–69

    Article  CAS  PubMed  Google Scholar 

  • Patel KR, Andreadi C, Britton RG, Horner-Glister E, Karmokar A, Sale S et al (2013) Sulfate metabolites provide an intracellular pool for resveratrol generation and induce autophagy with senescence. Sci Transl Med 5:205ra133

    Article  PubMed  CAS  Google Scholar 

  • Paul B, Masih I, Deopujari J, Charpentier C (1999) Occurrence of resveratrol and pterostilbene in age-old darakchasava, an ayurvedic medicine from India. J Ethnopharmacol 68:71–76

    Article  CAS  PubMed  Google Scholar 

  • Payen VL, Porporato PE, Danhier P, Vazeille T, Blackman M, May BH et al (2017) (+)-Catechin in a 1:2 complex with lysine inhibits cancer cell migration and metastatic take in mice. Front Pharmacol 8:869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pezzuto JM (2008) Grapes and human health: a perspective. J Agric Food Chem 56:6777–6784

    Article  CAS  PubMed  Google Scholar 

  • Phromnoi K, Yodkeeree S, Anuchapreeda S, Limtrakul P (2009) Inhibition of MMP-3 activity and invasion of the MDA-MB-231 human invasive breast carcinoma cell line by bioflavonoids. Acta Pharmacol Sin 30:1169–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popat R, Plesner T, Davies F, Cook G, Cook M, Elliott P et al (2013) A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Br J Haematol 160:714–717

    Article  CAS  PubMed  Google Scholar 

  • Pratheeshkumar P, Budhraja A, Son YO, Wang X, Zhang Z, Ding S et al (2012) Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR-2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS One 7:e47516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pratheeshkumar P, Son YO, Wang X, Divya SP, Joseph B, Hitron JA et al (2014) Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-kappaB signaling pathways in SKH-1 hairless mice skin. Toxicol Appl Pharmacol 280:127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526

    Article  CAS  PubMed  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  CAS  PubMed  Google Scholar 

  • Sagar SM, Yance D, Wong RK (2006) Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 1. Curr Oncol 13:14–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samant RS, Shevde LA (2011) Recent advances in anti-angiogenic therapy of cancer. Oncotarget 2:122–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Schindler R, Mentlein R (2006) Flavonoids and vitamin E reduce the release of the angiogenic peptide vascular endothelial growth factor from human tumor cells. J Nutr 136:1477–1482

    Article  CAS  PubMed  Google Scholar 

  • Shankar S, Nall D, Tang SN, Meeker D, Passarini J, Sharma J et al (2011) Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS One 6:e16530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheth S, Jajoo S, Kaur T, Mukherjea D, Sheehan K, Rybak LP et al (2012) Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS One 7:e51655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Yu J, Pohorly JE, Kakuda Y (2003) Polyphenolics in grape seeds-biochemistry and functionality. J Med Food 6:291–299

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Gutman M, Bucana CD, Sanchez R, Llansa N, Fidler IJ (1995) Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc Natl Acad Sci U S A 92:4562–4566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh CK, Liu X, Ahmad N (2015a) Resveratrol, in its natural combination in whole grape, for health promotion and disease management. Ann N Y Acad Sci 1348:150–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh CK, Ndiaye MA, Ahmad N (2015b) Resveratrol and cancer: challenges for clinical translation. Biochim Biophys Acta 1852:1178–1185

    Article  CAS  PubMed  Google Scholar 

  • Singh CK, Siddiqui IA, El-Abd S, Mukhtar H, Ahmad N (2016) Combination chemoprevention with grape antioxidants. Mol Nutr Food Res 60:1406–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh CK, Chhabra G, Ahmad N (2018) Chapter 7: Resveratrol and cancer cell biology. In Wu JM, Hsieh T-c (eds) Resveratrol: state of the art science and health applications. Actionable targets and mechanisms of resveratrol. World Scientific, Singapore, pp 183–207

    Google Scholar 

  • Singh CK, Mintie CA, Ndiaye MA, Chhabra G, Dakup PP, Ye T et al (2019) Chemoprotective effects of dietary grape powder on UVB radiation-mediated skin carcinogenesis in SKH-1 hairless mice. J Invest Dermatol 139:552–561

    Article  CAS  PubMed  Google Scholar 

  • Sprouse AA, van Breemen RB (2016) Pharmacokinetic interactions between drugs and botanical dietary supplements. Drug Metab Dispos 44:162–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Prasad R, Rosenthal E, Katiyar SK (2011) Grape seed proanthocyanidins inhibit the invasive potential of head and neck cutaneous squamous cell carcinoma cells by targeting EGFR expression and epithelial-to-mesenchymal transition. BMC Complement Altern Med 11:134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tertil M, Jozkowicz A, Dulak J (2010) Oxidative stress in tumor angiogenesis—therapeutic targets. Curr Pharm Des 16:3877–3894

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  CAS  PubMed  Google Scholar 

  • Thurston G, Daly C (2012) The complex role of angiopoietin-2 in the angiopoietin-tie signaling pathway. Cold Spring Harb Perspect Med 2:a006550

    Article  PubMed  CAS  Google Scholar 

  • Trapp V, Parmakhtiar B, Papazian V, Willmott L, Fruehauf JP (2010) Anti-angiogenic effects of resveratrol mediated by decreased VEGF and increased TSP1 expression in melanoma-endothelial cell co-culture. Angiogenesis 13:305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng SH, Lin SM, Chen JC, Su YH, Huang HY, Chen CK et al (2004) Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats. Clin Cancer Res 10:2190–2202

    Article  CAS  PubMed  Google Scholar 

  • Ucuzian AA, Gassman AA, East AT, Greisler HP (2010) Molecular mediators of angiogenesis. J Burn Care Res 31:158–175

    Article  PubMed  Google Scholar 

  • van Breemen RB, Wright B, Li Y, Nosal D (2016) Burton T standardized grape powder for basic and clinical research. In: Pezzuto JM (ed) Grapes and health. Springer, Cham, pp 17–26

    Google Scholar 

  • van Zijl F, Krupitza G, Mikulits W (2011) Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res 728:23–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walle T, Hsieh F, DeLegge MH, Oatis JE Jr, Walle UK (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32:1377–1382

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang H, Tang L, Chen H, Wu C, Zhao M et al (2013) Resveratrol inhibits TGF-beta1-induced epithelial-to-mesenchymal transition and suppresses lung cancer invasion and metastasis. Toxicology 303:139–146

    Article  CAS  PubMed  Google Scholar 

  • Ward AB, Mir H, Kapur N, Gales DN, Carriere PP, Singh S (2018) Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World J Surg Oncol 16:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber GF (2008) Molecular mechanisms of metastasis. Cancer Lett 270:181–190

    Article  CAS  PubMed  Google Scholar 

  • Weber GF, Bronson RT, Ilagan J, Cantor H, Schmits R, Mak TW (2002) Absence of the CD44 gene prevents sarcoma metastasis. Cancer Res 62:2281–2286

    CAS  PubMed  Google Scholar 

  • Wen W, Lu J, Zhang K, Chen S (2008) Grape seed extract inhibits angiogenesis via suppression of the vascular endothelial growth factor receptor signaling pathway. Cancer Prev Res (Phila) 1:554–561

    Article  CAS  Google Scholar 

  • Wu H, Liang X, Fang Y, Qin X, Zhang Y, Liu J (2008) Resveratrol inhibits hypoxia-induced metastasis potential enhancement by restricting hypoxia-induced factor-1 alpha expression in colon carcinoma cells. Biomed Pharmacother 62:613–621

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Liu F, Hong L, Sun L, Liang S, Wu K et al (2011) The function and mechanism of COX-2 in angiogenesis of gastric cancer cells. J Exp Clin Cancer Res 30:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz M, Christofori G (2010) Mechanisms of motility in metastasizing cells. Mol Cancer Res 8:629–642

    Article  CAS  PubMed  Google Scholar 

  • Yu HB, Zhang HF, Zhang X, Li DY, Xue HZ, Pan CE et al (2010) Resveratrol inhibits VEGF expression of human hepatocellular carcinoma cells through a NF-kappa B-mediated mechanism. Hepatogastroenterology 57:1241–1246

    CAS  PubMed  Google Scholar 

  • Zhang XY, DeSalle LM, Patel JH, Capobianco AJ, Yu D, Thomas-Tikhonenko A et al (2005) Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein. Proc Natl Acad Sci U S A 102:13968–13973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao HC, Qin R, Chen XX, Sheng X, Wu JF, Wang DB et al (2006) Microvessel density is a prognostic marker of human gastric cancer. World J Gastroenterol 12:7598–7603

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng Q, Tong M, Ou BQ, Liu CZ, Hu CP, Yang Y (2019) Isorhamnetin protects against bleomycin-induced pulmonary fibrosis by inhibiting endoplasmic reticulum stress and epithelial-mesenchymal transition. Int J Mol Med 43:117–126

    CAS  PubMed  Google Scholar 

  • Zhou W, Liu ZM, Wang M, Chen DY, Zhou L, Guo L (2019) Taxifolin inhibits the development of scar cell carcinoma by inducing apoptosis, cell cycle arrest, and suppression of PI3K/AKT/mTOR pathway. J Buon 24:853–858

    PubMed  Google Scholar 

  • Zhu YC, Sun LN, Zhang HJ, Li Y, Lai ST (2017) Effects of isorhamnetin on protein expression of VEGF, MMP-2 and endostatin in Lewis lung cancer mouse. Int J Clin Exp Med 10:11488–11495

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihal Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, C.K., Chhabra, G., Mintie, C.A., Ahmad, N. (2020). Grape Chemopreventive Agents Against Angiogenesis and Metastasis. In: Pezzuto, J., Vang, O. (eds) Natural Products for Cancer Chemoprevention. Springer, Cham. https://doi.org/10.1007/978-3-030-39855-2_12

Download citation

Publish with us

Policies and ethics