Abstract
Mobility, transportation and logistics are more and more influenced by a variety of indicators such as new technological developments, ecological and economic changes, political decisions and in particular humans’ mobility behavior. These indicators will lead to massive changes in our daily live with regards to mobility, transportation and logistics. New technologies will lead to a different mobility behavior with new constraints. These changes in mobility behavior and logistics require analytical systems to forecast the required information and probably appearing changes. These systems have to consider different perspectives and employ multiple indicators. Visual Analytics provides both, the analytical approaches by including machine learning approaches and interactive visualizations to enable such analytical tasks. In this paper the main indicators for Visual Analytics in the domain of mobility transportation and logistics are discussed and followed by exemplary case studies to illustrate the advantages of such systems. The examples are aimed to demonstrate the benefits of Visual Analytics in mobility.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Thomas, J.J., Cook, K.A.: Illuminating the Path: The Research and Development Agenda for Visual Analytics. National Visualization and Analytics (2005)
Nazemi, K.: Adaptive Semantics Visualization. Studies in Computational Intelligence, vol. 646 (2016)
Keim D., Andrienko, G., et al.: Visual analytics: definition, process, and challenges. In: Information Visualization. LNCS, vol. 4950, pp. 154–175. Springer, Berlin (2008)
Keim, D.A., Mansmann, F., et al.: Visual analytics: scope and challenges. In: Visual Data Mining: Theory, Techniques and Tools for Visual Analytics. LNCS, vol. 4404, pp. 76–90. Springer, Berlin (2008)
Thomas, J.: Visual analytics a grand challenge in science – turning information overload into the opportunity of the decade. In: Proceedings of APVIS 2007 (2007)
Thomas, J., Kielman, J.: Challenges for visual analytics. Inf. Visual. J. 11, 309–314 (2009)
Keim, D., Kohlhammer, J., Ellis, G., Mansmann, F.: Matering the Information Age Solving Problems with Visual Analytics. Eurographics Association (2010)
Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think, 1st edn. Morgan Kaufmann, Massachusetts (1999)
European Union: Regulation 2015/758. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R0758. Accessed 21 Oct 2019
Ansoffi, H.: Managing strategic surprise by response to weak signals. Calif. Manag. Rev. 18(2), 21–33 (1975)
Nazemi, K., Burkhardt, D.: Visual analytics for analyzing technological trends from text. In: Proceedings of IV2019, pp. 191–200. IEEE (2019)
Nazemi, K., Retz, R., Burkhardt, D., et al.: Visual trend analysis with digital libraries. In: Proceedings of the 15th International Conference on Knowledge Technology and Data-driven Business, Graz, pp. 14:1–14:8. ACM (2015)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Nazemi, K., Burkhardt, D.: A visual analytics approach for analyzing technological trends in technology and innovation management. In: Advances in Visual Computing, pp. 283–294. Springer, Cham (2019)
Acknowledgements
This work was partially funded by the Hessen State Ministry for Higher Education, Research and the Arts within the program “Forschung für die Praxis” and was conducted within the research group on Human-Computer Interaction and Visual Analytics (https://vis.h-da.de). The authors would like to thank the students Svenja Lehmann and Walter Oster for their implementation contributions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Nazemi, K., Burkhardt, D., Kaupp, L., Dannewald, T., Kowald, M., Ginters, E. (2020). Visual Analytics in Mobility, Transportation and Logistics. In: Ginters, E., Ruiz Estrada, M., Piera Eroles, M. (eds) ICTE in Transportation and Logistics 2019. ICTE ToL 2019. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham. https://doi.org/10.1007/978-3-030-39688-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-39688-6_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39687-9
Online ISBN: 978-3-030-39688-6
eBook Packages: EngineeringEngineering (R0)